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Abstract

Local feature-based explanations are a key component of the XAI

toolkit. These explanations compute feature importance values rel-

ative to an “interpretable” feature representation. In tabular data,

feature values themselves are often considered interpretable. This

paper examines the impact of data engineering choices on local

feature-based explanations. We demonstrate that simple, common

data engineering techniques, such as representing age with a his-

togram or encoding race in a specific way, can manipulate feature

importance as determined by popular methods like SHAP. Notably,

the sensitivity of explanations to feature representation can be ex-

ploited by adversaries to obscure issues like discrimination. While

the intuition behind these results is straightforward, their system-

atic exploration has been lacking. Previous work has focused on

adversarial attacks on feature-based explainers by biasing data or

manipulating models. To the best of our knowledge, this is the first

study demonstrating that explainers can be misled by standard,

seemingly innocuous data engineering techniques.

CCS Concepts

• Human-centered computing; • Computing methodologies

→ Machine learning; • Information systems → Data man-

agement systems; • Social and professional topics→ Socio-

technical systems;
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1 Introduction

Explainable AI (XAI) is becoming increasingly critical for justifying

the behavior of AI systems implemented in high stakes domains like

education, lending, public employment, and healthcare [1, 10, 39].

One of the key components of XAI is the use of local feature-based
explanations, which quantify the importance of an observation’s

features to an outcome (or some other quantity of interest). For

example, these explanations are foundational for algorithmic re-
course, where understanding why an individual is rejected for a

loan by an AI-assisted system allows them to contest or reverse

that unfavorable decision. Local feature-based explanations can

also be used to surface unfairness in decision-making, for example,

if a model is revealed to be making individual-level decisions on

the basis of features like age, gender, or race, which may be illegal

to use under the disparate treatment doctrine.
1
Further, these expla-

nations are becoming an essential tool to fulfill legal and regulatory

requirements, such as the European Union’s AI Act, and General

Data Protection Regulation’s “right to explanation” [14].

The Shapley value framework [29], originally developed for di-

viding revenue in cooperative games, is widely used to quantify

local feature importance in predictive classification. It underpins

prominent explanation methods like SHAP (Shapley Additive Ex-

planations) [23] and QII (Quantitative Input Influence) [11]. The

framework explains the classification outcome for an observation

by assessing how changes to a feature’s value, individually or in

combination with others, impact that outcome. This process sim-

ulates interventions, aligning with causal inference principles by

isolating each feature’s influence while controlling for others. A

high Shapley value for a protected feature like age suggests its

significant influence on the classifier’s decision.

However, Shapley-value-based explanations have limitations:

they can mislead users (intentionally or unintentionally) [17] and

are vulnerable to adversarial attacks and manipulations [22]. In

this paper, we focus on the key observation that local feature-

based explanations, derived from trained models and post-

processed data, are susceptible to manipulations through

feature engineering, which occurs upstream from classifica-

tion in the machine learning pipeline.We use SHAP [23], the

most widely adopted implementation of the Shapley value frame-

work, to show that local feature-based explanations are influenced

by simple data engineering operations, such as transforming contin-

uous values or encoding categorical values, which modify feature

1
https://en.wikipedia.org/wiki/Disparate_treatment
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age edu label prediction
Ann 30 BS 1 0

Bob 40 BS 1 1

Cat 50 HS 1 1

Dan 40 MS 0 1

age edu label prediction
Ann <50 BS 1 0

Bob <50 BS 1 1

Cat ≥50 HS 1 1

Dan <50 MS 0 1

age SHAP

edu SHAP

Figure 1: A hypothetical lending example: For a given clas-

sifier model, if we bucketize the age feature to generate a

local explanation of the outcome with SHAP, then the im-

portance of age for Ann decreases compared to using the

raw value of the feature. Intuitively, this happens because

𝑎𝑔𝑒 = 30 is infrequent—and low—in this hypothetical dataset,

while 𝑎𝑔𝑒 < 50 appears to be typical, both on its own and in

combination with education.

representations. For instance, bucketization—a common method of

grouping values into ranges—can make a feature value appear less

(or more) important in terms of SHAP. We now provide an intuition

through the example below:

Example 1.1 (Motivating example). Consider a vendor — a finan-

cial institution that uses a binary classifier to approve loans (see

Figure 1). Suppose that Ann applies for the loan and is incorrectly

rejected (a false negative). The vendor would like to see if its model

made this rejection decision based on Ann’s age, and decides to

compute feature importance using SHAP as part of its analysis. In-

deed, when SHAP is run over the raw feature values, age appears to

have high importance, likely because an age of 30 is comparatively

low in the vendor’s data. Worried about a potential lawsuit, the

vendor attempts to generate a different explanation for the same

classification outcome: they keep the classifier model fixed, but

change the representation of age, “bucketizing” it into the ranges

“below 50” and “50 and above”. The vendor is relieved to see that

this simple manipulation substantially diminishes the importance

of age when explaining Ann’s outcome.

Figure 2 demonstrates this very scenario for an individual in

the ACS Income dataset, with the SHAP plot on the top showing

an explanation on raw feature values, and the plot on the bottom

showing an explanation after age is bucketized. Observe that the im-

portance of age drops from rank 1 (most important) in Figure 2a to

rank 5 (somewhat important) in Figure 2b, a decrease of 5 positions

in terms of importance. Note also that, because of the efficiency

property of Shapley values [29], a SHAP explanation can be used

to reconstruct the outcome (by summing feature weights and re-

turning the positive label if the sum is positive). In the example

in Figure 2, both explanations are consistent with the classifier’s

prediction: they both predict that the individual would be rejected

for the loan. If the vendor is worried about being challenged for

using a protected feature like age to incorrectly reject applicants,

it can look for an explanation that agrees with the prediction, but

diminishes the importance of age. In this paper, we refer to this

kind of a manipulation as a data engineering attack.

Contributions and roadmap. In this paper, we systematically in-

vestigate how SHAP-generated feature-based explanations are af-

fected by simple data engineering choices, and how this sensitivity

1.0 0.5 0.0 0.5 1.0
SHAP value

47 = Age

1 = Occupation_Self-employed not owner

18 = Education

50 = Work Hours per Week

0 = Marriage_Married

1 = Sex

0 = Occupation_Federal gov employee

0 = Marriage_Never married or under 15

0 = Occupation_Local govemployee

0 = Race_Black or African American 

0 = Place of Birth_America

1 = Marriage_Separated

0 = Race_Asian alone

1 = Race_White alone

Sum of 15 other features

 Age

 Occupation_Self-employed not owner

 Education

 Work Hours per Week

 Marriage_Married

 Sex

 Occupation_Federal gov employee

 Marriage_Never married or under 15

 Occupation_Local govemployee

 Race_Black or African American 

 Place of Birth_America

 Marriage_Separated

 Race_Asian alone

 Race_White alone

Sum of 15 other features

+0.99

0.83

0.8

+0.65

0.36

+0.17

0.13

+0.1

+0.07

+0.03

+0.02

0.02

0.02

+0.02

+0.04

(a) SHAP values before bucketization of age

1.5 1.0 0.5 0.0 0.5
SHAP value

1 = Occupation_Self-employed not owner

18 = Education

50 = Work Hours per Week

0 = Marriage_Married

43.95 = Age

1 = Marriage_Separated

1 = Sex

0 = Occupation_Federal gov employee

0 = Marriage_Never married or under 15

0 = Occupation_Local govemployee

0 = Race_Asian alone

0 = Race_Black or African American 

0 = Place of Birth_America

1 = Race_White alone

Sum of 15 other features

 Occupation_Self-employed not owner

 Education

 Work Hours per Week

 Marriage_Married

 Age

 Marriage_Separated

 Sex

 Occupation_Federal gov employee

 Marriage_Never married or under 15

 Occupation_Local govemployee

 Race_Asian alone

 Race_Black or African American 

 Place of Birth_America

 Race_White alone

Sum of 15 other features

1.23

0.92

+0.57

0.37

+0.37

0.22

+0.18

0.11

+0.08

+0.06

0.03

+0.03

+0.02

+0.01

+0.04

(b) SHAP values after age is bucketized

Figure 2: SHAP values of features before (a) and after (b) buck-

etization for a fixed individual from the ACS Income dataset.

Note that the classifier model and SHAP explainer remain

fixed; the only modification to the individual’s features from

(a)→ (b) was the bucketization of age. In (a), age is encoded

as a continuous feature and is deemed most important by

SHAP, with a rank of 1 and a feature weight of 0.99. In (b),

the age feature was bucketized into 12 equi-width intervals

over its active domain, using the median age to represent

observations within each interval. This decreased the feature

weight to 0.37, demoting age to the 5th rank in importance.

can be used to design a data engineering attack on SHAP. We dis-

cuss related work in Section 2, describe preliminaries in Section 3,

and then present our contributions.

• As our first contribution, in Section 4, we empirically exam-

ine the impact of bucketization or binning on continuous

features (e.g., age) and of different encoding methods on cat-

egorical features (e.g., race). We show that SHAP is highly

sensitive to data engineering choices, with the importance of

1589
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age changing by as much as 20 rank positions in some cases.

Further, in cases where age is the most important feature, its

importance frequently drops by between 3 and 5 positions

in the ranking. When using the race feature, we show that

merging White and Asian individuals or White and Black

individuals into a single category can reduce the importance

of the race feature to nearly 0.

• As our second contribution, in Section 5, we design a fea-

ture engineering attack, demonstrating that sensitivity to

seemingly benign data engineering choices can enable ad-

versarial vendors to obscure the importance of protected

features with minimal impact on predictions, allowing them

to evade scrutiny without model retraining the model. For

example, we demonstrate that our attack generally outper-

forms equi-width bucketization by substantially reducing

the importance of the age feature without sacrificing expla-

nation fidelity.

In Section 6, we highlight the need for a more robust frame-

work for model explanations that evaluates not only accuracy and

fairness, but also the impact of data engineering on local feature-

based explanations. Creating tools and guidelines to ensure

that data engineering choices do not unduly influence re-

ported feature importance should become standard practice

in AI development. We also acknowledge limitations and outline

future directions. Finally, in Section 7, we summarize our insights.

All code is available at https://github.com/Aguno/Shap-Attack.

2 Related Work

The relationship between feature engineering and model explain-

ability has been explored in previous works. For example, Ribeiro

et al. [26] investigate how feature selection and engineering tech-

niques impact model explanations, focusing on how feature impor-

tance is derived from global model behavior. Our research comple-

ments this approach by systematically demonstrating how bucketi-

zation and binning can impact model explanations.

Other studies have examined how data engineering operations

like re-scaling, re-weighting, and re-sampling of features can either

mitigate or exacerbate bias [21, 38]. These works demonstrate the

unintended consequences of seemingly innocuous feature engi-

neering decisions on AI systems. However, none of these studies

explicitly address explainability, particularly in the context of SHAP,

one of the most widely adopted explanation methods [5, 7].

More recently, Slack et al. [30] proposed an adversarial attack on

SHAP by scaffolding a classifier that may be unfair on the input data,

but appears fair on the rest of the data in terms of common statistical

fairness criteria. In another recent approach, Baniecki and Biecek

[2] generate synthetic data to manipulate SHAP. The authors use a

genetic algorithm to manipulate the feature values towards certain

SHAP targets. Finally, the Fool SHAP method by Laberge et al. [22]

uses biased sampling to construct the background data such that

the protected feature’s importance is reduced, allowing the vendor

to show false compliance during an algorithmic fairness audit. Here,

an optimization problem is formulated to reduce the SHAP value

of a feature without significantly altering the background data

distribution relative to the original data. However, sampling data

can be viewed as an explicit manipulation and may be prohibited.

In comparison, our work does not focus on model fairness and

only performs common data engineering manipulations that a data

analyst could legitimately perform. We show that such seemingly

benign operations can alter SHAP-computed feature importance

and be used to design an attack.

Unlike prior work on predictive multiplicity [8], starting with

the work on the “Rashomon Effect” [9], where different models

may have comparable performance, our contribution is in showing

that the same model may produce different explanations due to

seemingly innocuous data preprocessing (i.e., feature engineering)

choices. This exposes a critical weakness in SHAP that has not been

shown in prior work and that, as we demonstrate, can enable an

adversarial actor to manipulate explanations.

Finally, there are other works that interrogate explainability [3,

15, 16] (e.g., counterfactual explanations), but they do not identify

data preprocessing vulnerabilities when using SHAP as we do.

3 Preliminaries

3.1 Local feature-based explanations with

Shapley values

The Shapley value framework [29] is widely used to quantify local

feature importance in predictive models [11, 23]. It does so by

attributing a model’s output for a given instance to individual input

features, based on how their inclusion—alone or in combination

with other features—affects the prediction.

The Shapley value for a feature 𝑖 is formally defined as:

𝜙𝑖 (𝑓 ) =
∑︁

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |! (𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆))

where 𝑁 is the set of all players (features), 𝑆 ⊆ 𝑁 \ {𝑖} is a subset of
players excluding player 𝑖 , 𝑓 is a value function defined on subsets

of 𝑁 (e.g., the expected model output conditional on the features

in 𝑆), 𝜙𝑖 (𝑓 ) is the Shapley value assigned to player 𝑖 , representing

their marginal contribution averaged over all possible coalitions.

In predictive classification, the players correspond to input fea-

tures, and 𝑓 (𝑆) is typically defined as the expected value of the

model output conditional on the feature values in subset 𝑆 . The

vector of Shapley values assigned to an instance’s features con-

stitutes an explanation. Due to the efficiency property of Shapley

values [29], the sum of these contributions exactly recovers the

model output (minus a baseline), ensuring additive consistency.

By convention, a feature’s importance is indicated by the ab-

solute value of its weight (with higher values denoting greater

importance), while the sign reflects the direction of its contribution

toward a specific prediction (positive or negative). For example, in

Figure 2(a), the age feature has a weight of −0.59: its high absolute

value indicates importance, and the negative sign points toward

the negative class label. Also by convention, visual explanations

sort features in descending order of absolute weight, with the most

important feature ranked first, regardless of sign, followed by the

next most important, and so on.

In this work, we use SHAP [23], with its open-source implemen-

tation
2
. SHAP is used extensively by industry practitioners [18, 33],

highlighting a critical need for its continued study, particularly

2
https://pypi.org/project/shap/
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0 99

(a) 4 equi-width buckets

0 99

(b) 3 equi-depth buckets

0 99

(c) custom buckets per Section 5.1

Figure 3: The figures above represent different ways to bucketize a continuous or high-dimensional ordinal feature like age. In
each sub-figure, the feature is represented as a lineplot with values from 0 to 99. Each circle represents an age value for a single

observation from the dataset, and the observations are the same across the sub-figures. For equi-width buckets (a), the domain

is divided into buckets of equal width. For equi-depth buckets (b), buckets are created that all contain an approximately equal

number of observations (this is equivalent to equi-width buckets over the percentile values of the feature). Sub-figure (c) shows

how custom buckets may be created by the method described in Section 5.1 to manipulate the SHAP rank of a feature.

when it comes to surfacing vulnerabilities that could be abused by

bad actors. We reveal the sensitivity of SHAP to feature engineering,

adding to a robust body of work on studying the tool, surfacing

issues, patching them, or expanding SHAP in other ways towards

better implementation in practice [34, 36, 37].

Many researchers and practitioners use XAI for fairness auditing.

Most relevant to our work, a high Shapley value for a protected

feature like age or race suggests the feature has a significant in-

fluence on the classification outcome, which may raise ethical or

legal concerns. Wexler et al. [37] present an approach for using

SHAP and “what-if tools” to probe ML models for fairness. Vengroff

[34] develops a toolkit based on SHAP that helps identify bias in

both an ML system and the data used to train that system. Deck

et al. [12] offer a nuanced perspective, noting that XAI tools are not

an “ethical panacea,” but are “one of many tools to approach the

multidimensional, sociotechnical challenge of algorithmic fairness,”

along with other tools like those focused on bias auditing.

3.2 Representing features

In tabular data, features can be continuous, ordinal, or categorical.

Continuous data can take any value within a range and is measur-

able, while ordinal data represents categories with a meaningful

order or ranking. Categorical data consists of distinct groups or

categories without an inherent ordering.

There are various ways to represent these data types in machine

learning pipelines. For continuous or ordinal features, we may leave

the data as is, or discretize the values using bucketization, where

values are grouped into ranges. These buckets can then be one-hot

encoded or treated as ordinal features. Categorical features can be

encoded using methods like one-hot, ordinal, or target encoding.

Additionally, scaling or normalization may be applied to adjust

distributions or ranges of features.

Encoding continuous or ordinal features. Consider the feature

age, which may be continuous or ordinal with integer values. For

prediction or explanation purposes, age could be used in its raw

form, bucketized into ordinal categories, or encoded into multiple

buckets via one-hot encoding. Importantly, “upstream” feature rep-

resentation choices affect the properties of the “downstream” model

in a machine learning pipeline [31], influencing its accuracy [20],

fairness, and explainability.

In this work, we focus on how bucketization [19]—grouping

continuous or ordinal data into distinct value ranges—affects model

predictions and SHAP explanations. We explore three methods

for bucketizing continuous features, as illustrated in Figure 3. The

first, equi-width in Figure 3a, creates buckets of equal feature value

ranges. The second, equi-depth in Figure 3b, ensures each bucket

contains an approximately equal number of data points (i.e., the

buckets represent percentiles of the data). The third method, in Fig-

ure 3c, employs Bayesian Optimization to define bucket widths that

optimize an adversarial objective, which we describe in Section 5.1.

Note that the number of buckets can vary across methods.

Categorical features. We frame our discussion of encoding cat-

egorical features through the protected feature race. Whenever

practitioners include race as a feature in machine learning mod-

els, they are implicitly making choices about how to encode that

feature [6, 35]. For example, the ACS Income and ACS Public Cov-

erage datasets
3
, used in our experiments, include eight distinct race

categories plus a null value. One approach is to represent all eight

categories using one-hot encoding. However, due to small sample

sizes in some categories, practitioners often create an “other” su-

percategory, leading to arbitrary groupings. Further, one category

represents individuals identifying as “mixed race,” but lacks infor-

mation on which races they identify with. Intersectional encodings

could also be considered.

In this work, we focus on six plausible encoding methods of

the race feature, shown in Table 1. Four of these individuals into

two race categories and two split them into three categories. While

not exhaustive, these encodings are sufficient for exploring the

sensitivity of SHAP to different race encodings.

Note: One-hot encoding can lead to counter-intuitive or redun-

dant explanations. Consider, for example, a simple binary feature

that denotes whether a person is a smoker. This feature would be

represented by two one-hot-encoded features: smoker=yes (set to 0

for a non-smoker) and smoker=no (set to 1 for a non-smoker). An

explanation of a medical diagnosis may redundantly assign high

3
https://github.com/socialfoundations/folktables
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importance to both smoker=yes and smoker=no: a person may be

predicted to have a low likelihood of developing lung cancer both

because they are a non-smoker (smoker=no is set to 1) and because

they are not a smoker (smoker=yes is set to 0). An explanation may

also be counter-intuitive, assigning high importance to smoker=yes
being set to 0 and low importance to smoker=no being set to 1.

Returning to the one-hot representation of race: an explanation

of a racially biased lending decision may assign a high positive

weight to both race=White being set to 1 (the applicant is White),

and to race=Black being set to 0 (the applicant is not Black). To

estimate the total impact of race on the outcome, we sum up the

weights of all one-hot-encoded components of the feature.

3.3 Experimental setup

We ran experiments over two real-world benchmark datasets with

associated predictive tasks.

(1) ACS Income (Virginia, 2018) [13] is used to predict whether

an individual’s income is above $50K. It contains 46,144 ob-

servations comprised of 8 features, out of which 5 are cate-

gorical.

(2) ACS Public Coverage (Virginia, 2018) [13] is used to predict

whether an individual is covered by public health insurance.

It contains 25,524 observations comprised of 16 features, out

of which 13 are categorical.

For both tasks, we treat age and race as protected features, and

one-hot encode all categorical features, including race. We use XG-

Boost, a state-of-the-art ensemble classifier, with hyperparemeter

tuning for overall accuracy.

Evaluating explanations. SHAP-based explanations can be eval-

uated using many different metrics [25, 27]. In this work, we use

three metrics. An explanation is considered faithful if, for a given

observation, the sum of its feature importance weights (before or

after any preprocessing modifications) corresponds to the originally

predicted outcome. The first metric, fidelity, refers to the propor-

tion of observations for which a faithful explanation was generated,

expressed as a ratio of those observations to the total number.

Additionally, we quantify how data representation choices affect

both the absolute and the relative importance of a feature. We

compute the average SHAP value (feature weight) and the average
rank (by absolute value of feature weight) of the protected feature,

and quantify the change in these metrics to compare explanations.

Difference in average SHAP value quantifies the absolute change

in feature importance, while difference in average rank quantifies

the relative change in feature importance.

Sensitivity versus attack experiments. In the sensitivity experi-

ments (Section 4), we alter the feature representation in both the

training data (used to train the classifier) and the test data (used

by the explainer). Here, we examine how explanations respond to

feature bucketization, training a new model each time and applying

the same representation to both the classifier and explainer.

In contrast, in the attack experiments (Section 5), we train the

model on the original, non-bucketized data.We then keep the model

fixed and only modify the representation of the inputs to the ex-

plainer. Here, we show that different explanations can be produced

for the same model. In particular, this allows us to shift the apparent

importance of a sensitive feature without retraining.

In both settings, the baseline applies no additional feature engi-

neering beyond simple one-hot encoding for categorical features.

4 First Contribution: Sensitivity of SHAP to

Feature Engineering

The experimental results reported in this section demonstrate that

seemingly trivial feature engineering choices can lead to potentially

harmful outcomes.

4.1 Continuous features (age)
We evaluate SHAP’s sensitivity to bucketization of the continuous

age feature on the ACS Income dataset. Figure 4a shows that the

feature importance of age increases with increasing number of

buckets, both overall and for the observations for which age is

the most important feature when the classifier is trained on raw

(unbucketized) data. Figure 4b complements this result by showing

that the average rank of age decreases (i.e., age moves closer to

the top of the list) with increasing number of buckets. Figure 4c

shows that the percentage of observations for which age is the most

important feature increases substantially with increasing number

of buckets, showing high sensitivity.

Intuitively, as the number of buckets increases, age becomes less

obfuscated and thus plays a more important role in a model’s pre-

diction. Hence, even if bucketization itself is a standard operation,

the importance of age , both in absolute terms (its weight) and in

relative terms (its rank) can change drastically for a substantial por-

tion of the observations. Similar to the sensitivity testing scenario,

more buckets means the age is more fine-grained and has higher

SHAP values across the entire dataset. However, the average SHAP

value among the observations for which age is the most important

feature remains similar regardless of the number of buckets.

Figure 5 shows the frequencies of rank changes of the age fea-
ture when using 5 or 10 equi-width or equi-depth buckets on ACS

Income. For all scenarios, we observe that bucketization can have

drastic impacts on a non-trivial portion of individuals, and that the

importance of age may change by as much as 20 positions in the

ranking.

In Figure 6, we vary the number of equi-width buckets and show

the number of observations for which the rank of the age feature
increased, decreased, or did not change. We also perform the same

experiment for individuals for whom age is the highest-ranked

(i.e., most important) feature, see Figure 11 in the Appendix. We

can see in Figures 6a and 6b that the third bucket has the high-

est volatility. This demonstrates that bucketization can influence

specific demographics more than others.

We also investigate how the SHAP ranking sensitivity changes

based on the confusion matrix position of data points, i.e., whether

an individual was a true positive (TP), false positive (FP), true nega-

tive (TN), or false negative (FN). This has important implications for

fairness, as many fairness metrics are based on metrics derived from

the confusion matrix of a model [28]. Interestingly, we find that

changes are not uniform across these groups, as seen in Figure 12

in the Appendix, which quantifies the decrease in the importance

of age relative to other features as the number of histogram buckets
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Figure 4: Number of buckets versus average feature importance weight and rank of the age feature on ACS Income. For each

plot, we compare uniform (equi-width) and quantile (equi-depth) histograms.
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Figure 5: Frequencies of rank shifts of the age feature when using (a) 5 equi-width, (b) 5 equi-depth, (c) 10 equi-width, or (d)

10 equi-depth buckets on ACS Income. The frequencies are shown on a log scale for better readability. Negative rank shifts

represent “demotion” of age where the rank values increase (e.g., from Rank 1 to 10) making age less important, while positive

shifts represent rank “promotion” where the importance of age increases.

increases. Depending on how much the adversary intends to lower

the importance of a protected feature, the adversary can choose a

specific number of buckets. For example, suppose that an adversary

is using ACS Income and wants to make age look unimportant for

false-negative observations using the data in Figure 12. Looking at

Figure 12d, the adversary may decide to use 4 or 7 buckets where a

large portion of the observations consider age to be unimportant

(“rank 5 or below”).

In summary, we showed that SHAP is highly sensitive to buck-

etization, with the relative importance of age changing by as much

as 20 rank positions in some cases. Furthermore, when age is the
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Figure 6: Frequency plot for varying numbers of equi-width buckets on age on ACS Income. Bucket boundaries are shown on

the 𝑥-axis.

Table 1: Bucketization strategies for the race feature. Base
retains the original categories. OvR (“one vs. rest”) creates

two categories: one for the specified value and one for all

others. The 2 buckets and 3 buckets strategies group values

into 2 or 3 categories, respectively. Each row in the table

corresponds to a strategy; buckets are separated by commas,

and merged values are indicated with a plus sign (+).

Strategy Buckets

Base White, Black, Asian, Other

One vs. rest (OvR)

White, Rest

Black, Rest

Asian, Rest

Other, Rest

2 buckets

White, Black + Asian + Other

White + Black , Asian + Other

White + Asian, Black + Other

White, Other

3 buckets

White, Black, Asian + Other

White, Asian, Black + Other

most important feature, its importance frequently drops by 3–5

positions in the ranking.

4.2 Categorical features (race)
We also evaluate SHAP’s sensitivity to the representation of the

categorical feature race. We apply two preprocessing strategies:

one-vs-rest (OvR) and a combinatorial merging approach. In OvR,
each race value is isolated while the remaining values are grouped,

and a classifier is trained on the modified feature. The rest of the

evaluation follows the procedure described earlier. The different

merging strategies are shown and further described in Table 1.

Figures 7 (a)–(c) show how bucketization affects the race feature
in theOvR case. In particular, we compare several settings: Base (no
merging), White vs. others, Asian vs. others, Black vs. others, and

Non-(White, Asian, Black) vs. others. Overall, the average SHAP

value of the race feature decreases compared to Base for all settings

as shown in Figure 7a. Even if the decrease seems minor for the

White-versus-Rest strategy, the fraction of samples that have race
as their most important feature drastically decreases, as shown in

Figure 7b, demonstrating the effectiveness of bucketization. For

Asian-versus-Rest, both of these values decrease significantly. We

perform additional analyses in Figure 7c, which shows the average

SHAP value of race only for observations with race as the most

important feature. For Asian-versus-Rest, the average SHAP value is

higher than that of Base, which means that these (few) observations

are more likely to be discriminated against based on race.
In summary,we showed that SHAP is highly sensitive to bucke-

tization for categorical features where the bucketization effectively

shifts the importance from race to other features.

5 Second contribution: A feature engineering

attack on SHAP

5.1 Deliberate manipulation of SHAP values

In Section 4, we demonstrated that post-hoc SHAP explanations

are sensitive to the way features are encoded. Importantly, this

sensitivity can be exploited to intentionally manipulate feature

importance reported by SHAP.

Audit scenario. Similar to Laberge et al. [22], we consider a two-

party audit scenario. The first party is a vendor that has full, white-

box access to the data, the classifier model, and the data engineering

and modeling pipelines. The vendor is able to make data engineer-

ing and modeling decisions and implement them into the respective

pipelines. The second party is an auditor, who receives static copies

of pre-processed data (i.e., the data that is prepared for modeling)

and the model, to which it has black-box access. While the auditor

cannot perform any engineering, it can generate feature-based ex-

planations of model predictions for any observation in the dataset

using SHAP. This allows the auditor to inspect how often the model

appears to use protected features (according to SHAP explanations)

to make classification decisions. Notably, the vendor has an adver-

sarial goal: it wants to build models that make use of protected

features, but it does not want those features to appear to have high

importance according to SHAP when inspected by an auditor.
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Figure 7: Effect on SHAP values using OvR bucketization for the race feature using the ACS Income dataset. We use each feature

value (White, Asian, Black, or Other) as a category and assign the remaining values to a single category. (a) Average SHAP

values of the race feature. (b) OvR setting versus the portion of observations where race is the most important feature. (c) OvR

setting versus the mean SHAP value of race for the observations where race is the most important feature.

Formalization. The dataset 𝐷 consists of |𝐷 | training examples

as tuples (x𝑖 , 𝑦𝑖 ), where example 𝑖 corresponds to the 𝑖-th individual

in the dataset. Each x ∈ R𝑛 , where 𝑛 is the number of features, and

that individual’s outcome (or target) is given by 𝑦 ∈ {0, 1}. We use

𝑎 to denote the feature at a specific index 𝑥𝑎 ∈ x, which represents

the protected feature for each individual. The dataset 𝐷 is used to

learn a machine learning classifier 𝑓 : X → [0, 1].
Recall from the description of the audit scenario, that the vendor

is able to make data engineering decisions and implement them

before training the classifier 𝑓 . LetT be the set of all possible feature

transformations that could be applied to the protected feature 𝑎.

Each transformation 𝜏 ∈ T is a function of the form 𝜏 : A → S,
whereA is the set of possible values for the protected feature 𝑎, and

S is the set of all possible values for the transformed feature. We

refer to 𝜏 (𝑎) as the transformation of feature 𝑎. Then generally, the

manipulation framework we propose uses the following objective:

min

T
−SHAP_Rank(𝑎, 𝑓 , 𝐷), s.t. 𝜆 > 𝜖 (1)

where SHAP_Rank(𝑎, 𝑓 , 𝐷) is a function that returns the SHAP

rank of feature 𝑎 under model 𝑓 and with data 𝐷 , 𝜆 is the fidelity of

the explanation (as defined in Section 3.3), and 𝜖 is a user-defined

threshold for fidelity. The purpose of the fidelity constraint is to en-

sure that the feature transformation remains faithful to the original

model (and, consequently, to the original explainer).

We now describe a particular instantiation of this framework

for manipulating continuous features via the bucketization feature

transformation. Suppose that 𝑎 ∈ R≥0 is a continuous feature. We

can define the feature transformation 𝜏𝐾 : R≥0 → {0, 1, . . . , 𝑘} that
discretizes 𝑎 into 𝑘 buckets in the following way:

𝜏𝐾 (𝑎) =


0, 𝑏0 < 𝑎 < 𝑏1

1, 𝑏1 < 𝑎 < 𝑏2
.
.
.

K, 𝑏𝑘−1 < 𝑎 < 𝑏𝑘

(2)

Where 𝑏0 < 𝑏1 < · · · < 𝑏𝑘 are the upper-lower bounds for each

bucket. Based on the choices for the upper-lower bounds used to

define the cases of 𝜏𝑘 , applying the transformation 𝜏𝑘 (𝑎) can be

used to induce a particular set of 𝑘 partitions over the data𝐷 . LetP𝑘
be the set of all 𝑘-partitions over 𝐷 . Note that this occurs upstream

in our machine learning pipeline, so 𝑓 will always be trained on

data with the transformed feature. Then our objective is:

min

𝑘∈{0,1,...,𝑘 },𝑃 ∈P∥
−SHAP_rank(𝑎, 𝑓 , 𝐷), s.t. 𝑏0 < · · · < 𝑏𝑘 , 𝜆 > 𝜖

(3)

We can solve this problem using Bayesian Optimization [24],

which is commonly used to solve black-box optimization problems

by constructing a posterior distribution of Gaussian functions that

best describe the unknown function to optimize. Bayesian Opti-

mization is particularly appropriate for this problem because it is

effective when the objective function is expensive to evaluate, as is

often the case with the function SHAP_rank.

5.2 Bucketization attack experiments

We now perform the data engineering attacks described in the pre-

vious section, which use Bayesian Optimization (BO) to tune bucket

boundaries when using age. Compared to equi-width bucketization,

we observe sharper changes in the SHAP rank of age, but also a

more substantial decrease in fidelity. (Although not shown here,

the comparison with equi-depth bucketization is very similar.)

The experimental results in this section are computed using 5-

fold cross-validation, with metrics averaged across folds. We report

results for both ACS Income and ACS Public Coverage.

For BO, we tune four bucket boundaries between fixed minimum

andmaximumvalues. Using age, we set theminimum andmaximum

values to be 17 and 94 years old, respectively. We then perform

300 iterations where the objective function is the same as Equation

(3). For the fidelity constraint, we require that the fidelity is at

least as good as that in the equi-width setting. As a result, the BO

attack significantly outperforms Base (no bucketization) and mostly

outperforms the equi-width setting. We conclude that BO thus may

be used to hide the contributions of age on model predictions.

Figure 8 shows how the importance rank of age changes when
varying the number of buckets (and thus the number of BO pa-

rameters) using ACS Income and Public Coverage. As the number
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Figure 8: SHAPvalue rank trends of the age feature onACS In-

come and ACS Public Coverage. Higher average rank means

that feature has lower importance. Fidelity under attack is at

least as high as under equi-width bucketization in each case.

of buckets increases, our attack consistently shows comparable or

higher ranks compared to using the Base average rank, although the
gap decreases. The gap decrease is due to the difficulty in solving

high-dimensional BO problems. At the same time, the constraint

on fidelity ensures that our attack is always at least as meaningful

as the equi-width bucketization. Table 2 shows the fidelity values

of the attacks on age, with bucketization of Figure 8. Even when

the average rank of age drops dramatically, the fidelity values are

at least 88%.

When using race, BO cannot be performed on categorical values,

so we instead combine races for the bucketization attack as in Ta-

ble 1, but consider more combinations. Figure 9 shows the how the

rank of race changes on ACS Income and ACS Public Coverage. For

the {White+Black, Asian+Other} bucketization on both tasks, the

rank value of race is significantly higher (i.e., race is far less impor-

tant) compared to the Base strategy. We suspect that race=White
by itself is a strong signal when making predictions, but when

combined with another race into the same bucket, its importance

is diluted. Table 3 shows the fidelity values of the attacks on race

Table 2: Fidelity values of bucketizations on age for ACS

Income and ACS Public Coverage.

Buckets ACS Income ACS Public Coverage

2 88.60 ± 0.09 94.38 ± 0.83

3 91.37 ± 0.26 95.99 ± 0.13

4 92.39 ± 0.21 96.95 ± 0.03

5 93.15 ± 0.13 96.85 ± 0.04

6 94.67 ± 0.08 97.25 ± 0.03

7 94.59 ± 0.04 97.43 ± 0.03
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Figure 9: SHAP value rank trends of the race feature using
the ACS Income and ACS Public Coverage datasets. Simply

combining two races into a single bucket dramatically in-

creases the average SHAP value rankings.

for the bucketizations of Figure 9. At least 98% of all explanations

have perfect fidelity (i.e., reconstruct the true outcome).

In summary, we showed that, on ACM Income and Public Cov-

erage, our BO attack mostly outperforms equi-width bucketization

in terms of increasing the SHAP ranks of age without compromis-

ing fidelity. Our attack is also effective when using race where we
combine races for bucketization. In particular, on ACS Public Cover-

age, combining White and Black individuals into a single category

brings the importance of race close to zero.
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Table 3: Fidelity value of bucketizations on race for ACS

Income and ACS Public Coverage.

Buckets ACS Income ACS Public Coverage

W, B+A+O 98.56 ± 0.48 99.57 ± 0.09

W+B, A+O 98.10 ± 0.10 98.00 ± 0.19

W+A, B+O 99.16 ± 0.09 99.65 ± 0.10

W, B, A+O 99.72 ± 0.01 99.67 ± 0.10

W, A, B+O 99.65 ± 0.05 99.74 ± 0.09

6 Discussion

We note that any sociotechnical system that incorporates AI/ML

is not a monolith: it impacts many stakeholders, including prac-

titioners, compliance officers, auditors, affected individuals, and

society at large. In this section, we state the implications of our work

for practitioners and auditors seeking to ensure the responsible

implementation of AI/ML systems.

Our experimental results show that SHAP, one of the most

widely-used post-hoc explanation methods, is highly sensitive to

upstream data engineering decisions. Furthermore, we demonstrate

that a principled approach using Bayesian Optimization can exploit

this sensitivity to manipulate SHAP. Below, we discuss the practical

implications of this finding.

Practitioners. Our results further highlight the importance of

thoughtful feature engineering when building machine learning

pipelines, and of assessing how those decisions may impact the

accuracy, fairness, and explainability of the systems being built

and deployed [31]. Kamiran and Calders [21] and Zafar et al. [38]

showed that varying feature representations can affect the fairness

of a machine learning classifier. We expand on this result, show-

ing that these effects extend to model explainability—particularly

when using the post-hoc explanation method SHAP. Notably, this

recommendation can also be framed as an opportunity. In line with

earlier framing by Stoyanovich et al. [32], Bell et al. [4] showed that

the explainability of a system depends on the context of use, the

data, the underlying model type, the stakeholders, and the specific

questions a human is trying to answer about the system. Practition-

ers could use these factors to inform how they encode features to

improve the explainability of their pipelines.

Auditors. In this work, we showed how seemingly innocuous

decisions—such as the bucketization of the age feature—can be used

to manipulate the SHAP explainer. Our experiments demonstrate

that one can successfully reduce a feature’s apparent importance

while minimally impacting the explanation’s fidelity to the orig-

inal model’s outcomes. Importantly, such manipulation could be

exploited by adversarial actors to obscure discrimination in their

models. While developing a technical defense is beyond the scope

of this paper, we offer the following recommendation to auditors:

governance and audit frameworks for machine learning systems

should be expanded to account for data engineering decisions.

Limitations. This work has several limitations. While we do per-

form an attack on categorical features, it relies on predefined, se-

mantically meaningful groupings. More work is needed to develop

methods for semi-automatically exploring the combinatorial space

of groupings, particularly for high-cardinality features. A naïve

approach—exhaustively enumerating all bucketings to find the one

that most impacts the importance rank of race while preserving
model fidelity—is computationally infeasible. Future work should

develop principled techniques for navigating this space efficiently.

Another limitation is that we consider sensitive features in iso-

lation. Our experiments explore the sensitivity of explanations to

feature representations for age and race separately, with targeted

attacks designed independently for each. In practice, sensitive at-

tributes often interact—and their combined effects can influence

model behavior and interpretability. Future work should develop

holistic methods that jointly consider multiple sensitive features

for explainability and robustness.

7 Conclusions and future work

We explored how common data engineering techniques affect local

feature-based explanations from methods like SHAP, and showed

that subtle preprocessing choices can significantly alter explana-

tions. We also introduced a feature engineering attack that hides

the importance of protected features with minimal impact on pre-

dictions. Finally, we called for more robust explanation frameworks

that consider not only accuracy and fairness, but also the influence

of data engineering—especially in transparency-critical settings.

While our work highlighted SHAP’s sensitivity to common pre-

processing operations and their potential for misuse, the same

insights can be applied constructively. Instead of designing attacks,

similar techniques can inform data engineering choices that im-

prove the explainability and robustness of classification decisions.

For example, identifying preprocessing choices that consistently

elevate the importance of semantically meaningful features may

lead to models that better reflect human reasoning and are eas-

ier to audit. These insights could also support the development

of classifiers with greater control over the distribution of feature

importance. Future work should extend this approach to sets of

features—continuous, categorical, or mixed—and investigate how

thoughtful data engineering can help align model explanations with

stakeholder expectations. Finally, future research should examine

the impact of more complex data engineering transformations on

SHAP explanations.
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A Local explanations

Continuing from Section 1, we perform individual analyses to un-

derstand how the SHAP ranking of age can decrease for a sample

for the ACS Public Coverage dataset. Figure 10 shows how the age’s

SHAP ranking decreases for an individual. In (a), the age of the first

individual is 22, which can be viewed as a small value. Once the age

is bucketized into a range of ages, the value 22 is no longer special,

and the age’s SHAP value becomes negligible.

B Further analyses on ACS Income

Continuing from Section 4.1, we focus on individuals for whom

age is the highest-ranked (i.e., most important) feature and show

the number of observations for which the rank of the age feature
increased, decreased, or did not change in Figure 11. Only a few

samples in the third bucket have age as the first rank.

C SHAP Ranking Sensitivity

Continuing from Section 4.1, we investigate how the SHAP ranking

sensitivity changes based on the confusion matrix position of data

points. Figure 12 shows that changes are not uniform across these

groups.
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(b) SHAP values after bucketizing age into 10 equally sized buckets

Figure 10: SHAP values of features before (a) and after (b) bucketization for a fixed observation from ACS Public Coverage.
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(b) no change in the rank of age

Figure 11: Frequency plot for different buckets of the age feature on ACS Income. Bucket boundaries are shown on the 𝑥-axis.

(a) Number of observations where age was the most important feature before bucketization, and where the relative importance

of age decreased (rank increased) after bucketization. (b) Number of observations where age was the most important feature

both before and after bucketization.
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(c) True negative
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Figure 12: SHAP ranking changes for the four outcomes where age was the highest-ranked feature as we change the number of

buckets in the ACS Income dataset.
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