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Abstract: In remote sensing, Active Learning (AL) has become an important technique to collect
informative ground truth data “on-demand” for supervised classification tasks. Despite its effec-
tiveness, it is still significantly reliant on user interaction, which makes it both expensive and time
consuming to implement. Most of the current literature focuses on the optimization of AL by modify-
ing the selection criteria and the classifiers used. Although improvements in these areas will result in
more effective data collection, the use of artificial data sources to reduce human–computer interaction
remains unexplored. In this paper, we introduce a new component to the typical AL framework, the
data generator, a source of artificial data to reduce the amount of user-labeled data required in AL.
The implementation of the proposed AL framework is done using Geometric SMOTE as the data
generator. We compare the new AL framework to the original one using similar acquisition functions
and classifiers over three AL-specific performance metrics in seven benchmark datasets. We show
that this modification of the AL framework significantly reduces cost and time requirements for a
successful AL implementation in all of the datasets used in the experiment.

Keywords: active learning; artificial data generation; land use/land cover classification; oversam-
pling; SMOTE

1. Introduction

The technological development of air and spaceborne sensors and the increasing num-
ber of remote sensing missions have allowed the continuous collection of large amounts of
high quality remotely sensed data. These data are often composed of multi- and hyperspec-
tral satellite imagery, essential for numerous applications, such as Land Use/Land Cover
(LULC) change detection, ecosystem management [1], agricultural management [2], water
resource management [3], forest management, and urban monitoring [4]. Despite LULC
maps being essential for most of these applications, their production is still a challenging
task [5,6]. They can be updated using one of the following strategies:

1. Photo-interpretation. This approach consists of evaluating a patch’s LULC class by
a human operator based on orthophoto and satellite image interpretation [7]. This
method guarantees a decent level of accuracy, as it is dependent on the interpreter’s
expertise and human error. Typically, it is an expensive, time-consuming task that
requires the expertise of a photo-interpreter. This task is also frequently applied to
obtain ground-truth labels for training and/or validating Machine Learning (ML)
algorithms for related tasks [8,9].

2. Automated mapping. This approach is based on the usage of a ML method or a
combination of methods in order to obtain an updated LULC map. The development
of a reliable automated method is still a challenge among the ML and remote sensing
community, since the effectiveness of existing methods varies across applications and
geographical areas [5]. Typically, this method requires the existence of ground-truth
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data, which are frequently outdated or nonexistent for the required time frame [1].
On the other hand, employing a ML method provides readily available and relatively
inexpensive LULC maps. The increasing quality of state-of-the-art classification
methods has motivated the application and adaptation of these methods in this
domain [10].

3. Hybrid approaches. These approaches employ photo-interpreted data to augment the
training dataset and improve the quality of automated mapping [11]. They attempt
to accelerate the photo-interpretation process by selecting a smaller sample of the
study area to be interpreted. The goal is to minimize the inaccuracies found in the
LULC map by supplying high-quality ground-truth data to the automated method.
The final (photo-interpreted) dataset consists of only the most informative samples,
i.e., patches that are typically difficult to classify for a traditional automated mapping
method [12].

The latter method is best known as AL. It is especially useful whenever there is a
shortage or even absence of ground-truth data and/or the mapping region does not contain
updated LULC maps [13]. In a context of limited sample-collection budget, the collection
of the most informative samples capable of optimally increasing the classification accuracy
of a LULC map is of particular interest [13]. AL attempts to minimize the human–computer
interaction involved in photo-interpretation by selecting the data points to include in the
annotation process. These data points are selected based on an uncertainty measure and
represent the points close to the decision borders. Afterwards, they are passed on for
photo-interpretation and added to the training dataset, while the points with the lowest
uncertainty values are ignored for photo-interpretation and classification. This process is
repeated until a convergence criterion is reached [14].

The relevant work developed within AL is described in detail in Section 2. This
paper attempts to address some of the challenges found in AL, mainly inherited from
automated and photo-interpreted mapping: mapping inaccuracies and time consuming
human–computer interactions. These challenges have different sources:

1. Human error. The involvement of photo-interpreters in the data labeling step carries
an additional risk to the creation of LULC patches. The minimum mapping unit being
considered and the quality of the orthophotos and satellite images being used are
some of the factors that may lead to the overlooking of small-area LULC patches and
label-noisy training data [15].

2. High-dimensional datasets. Although all the bands (i.e., features) present in multi-
and hyperspectral images contain useful information for automated classification,
they also introduce an increased level of complexity and redundancy in the classifica-
tion step [16]. These datasets are often prone to the Hughes phenomenon, also known
as the curse of dimensionality.

3. Class separability. Producing an LULC map considering classes with similar spectral
signatures makes them difficult to separate [17]. A lower pixel resolution of the
satellite images may also imply mixed-class pixels, which may lead to both lower
class separability and higher risk of human error.

4. Existence of rare land cover classes. The varying morphologies of different geograph-
ical regions naturally implies an uneven distribution of land cover classes [18]. This
is particularly relevant in the context of AL since the data selection method is based
on a given uncertainty measure over data points whose class label is unknown. Con-
sequently, AL’s iterative process of data selection may disregard wrongly classified
land cover areas belonging to a minority class.

Research developed in the field of AL typically focuses on the reduction of human
error by minimizing the human interaction with the process through the development of
more efficient classifiers and selection criteria within the generally accepted AL framework.
Concurrently, the problem of rare land cover classes is rarely addressed. This is a frequent
problem in the ML community, known as the Imbalanced Learning problem. This problem
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exists whenever there is an uneven between-class distribution in the dataset [19]. Specif-
ically, most classifiers are optimized and evaluated using accuracy-like metrics, which
are designed to work primarily with balanced datasets. Consequently, these metrics tend
to introduce a bias towards the majority class by attributing an importance to each class
proportional to its relative frequency [10]. For example, such a classifier could achieve an
overall accuracy of 99% on a binary dataset where the minority class represents 1% of the
overall dataset and thus still be useless. Several methods have been developed to deal
with this problem. They can be categorized into three different types of approaches [20,21].
Cost-sensitive solutions perform changes to the cost matrix in the learning phase. Algo-
rithmic level solutions modify specific classifiers to reinforce learning on minority classes.
Resampling solutions modify the training data by removing majority samples and/or
generating artificial minority samples. The latter is independent from the context and can
be used alongside any classifier. Since we are interested in the introduction of artificial data
generation in AL, we analyze the state of the art on resampling techniques (specifically
oversampling) in Section 3.

In this paper, we propose a novel AL framework to address two limitations commonly
found in the literature: minimize human–computer interaction and reduce the class imbal-
ance bias. This is done with the introduction of an additional component in the iterative
AL procedure (the generator) that is used to generate artificial data to both balance and
augment the training dataset. The introduction of this component is expected to reduce the
number of iterations required until the classifier reaches a satisfactory performance.

This paper is organized as follows. Section 1 explains the problem and its con-
text. Sections 2 and 3 describe the state of the art in AL and oversampling techniques.
Section 4 explains the proposed method. Section 5 covers the datasets, evaluation metrics,
ML classifiers, and experimental procedure. Section 6 presents the experiment’s results
and discussion. Section 7 presents the conclusions drawn from our findings.

2. Active Learning Approaches

As the amount of unlabeled data increases, the interest and practical usefulness of
AL follows that trend [22]. AL is used as the general definition of frameworks aiming to
train a learning system in multiple steps, where a new dataset is chosen and added to the
training dataset each time [11]. Typically, an AL framework is composed of the following
elements [11,13,23]:

1. Unlabeled dataset. It consists of the original data source (or a sample thereof). It
is used in combination with the chooser and the selection criterion to expand the
training dataset in regions where the classification uncertainty is higher. Therefore, the
unlabeled dataset is used for both producing the initial training dataset by selecting a
set of instances for the supervisor to annotate (discussed in point 3) and calculating
the uncertainty map to augment the training dataset.

2. Supervisor. It is a human annotator (or team of human annotators) to whom the
uncertainty map is presented. The supervisor is responsible for annotating unlabeled
instances to be added to the augmented dataset. In remote sensing, the supervisor is
typically a photo-interpreter, as is the case in [24]. Some research also refers to the
supervisor as the oracle [11,25–27].

3. Initial training dataset. It is a small, labeled sample of the original data source used to
initiate the first AL iteration. The size of the initial training sample normally varies
between no instances at all and 10% of the unlabeled dataset [28].

4. Current and expanded training dataset. It is the concatenation of the initial training
dataset and the datasets labeled by the supervisor in past iterations (discussed in
Point 2).

5. Chooser (classifier). It produces the class probabilities for each unlabeled instance.
6. Selection criterion. It quantifies the chooser’s uncertainty level for each instance

belonging to the unlabeled dataset. It is typically based on the class probabilities
assigned by the chooser. In some situations, the chooser and the selection criterion
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are grouped together under the concept acquisition function [11] or query function [13].
Some of the literature refers to the selection criterion by using the concept sampling
scheme [12].

Figure 1 schematizes the steps involved in a complete AL iteration. For a better context
within the remote sensing domain, the prediction output can be identified as the LULC map.
This framework starts by collecting unlabeled data from the original data source. They are
used to generate a random initial training sample and are labeled by the supervisor. In
practical applications, the supervisor is frequently a group of photo-interpreters [22]. The
chooser is trained on the resulting dataset and is used to predict the class probabilities on
the unlabeled dataset. The class probabilities are fed into a selection criterion to estimate
the prediction’s uncertainty, out of which the instances with the highest uncertainty will be
selected. This calculation is motivated by the absence of labels in the uncertainty dataset.
Therefore, it is impossible to estimate the prediction’s accuracy in the unlabeled dataset in
a real case scenario. The iteration is completed when the selected points are tagged by the
supervisor and added to the training dataset (i.e., the augmented dataset).

Unlabeled 
Dataset

Initial 
Training 
Dataset

Current 
Training 
Dataset

Supervisor

Classifier

Selection CriterionData labels

Train

Predict

Initialization Iteration

Unlabeled 
Dataset
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Figure 1. Diagram depicting the typical AL framework.

A common challenge found in AL tasks is ensuring the consistency of AL over different
initializations [22]. There are two factors involved in this phenomenon. On the one
hand, the implementation of the same method over different initializations may result
in significantly different initial training samples, leading to varying accuracy curves. On
the other hand, the lack of a robust selection criterion and/or classifier may also result in
inconsistencies across AL experiments with different initializations. This phenomenon was
observed and documented in a LULC classification context in [29].

The classification method plays a central role in the efficacy of AL. The classifier used
should be able to generalize with a relatively small training dataset. Specifically, deep
learning models are used in image classification due to their capability of producing high
quality predictions. However, to make such models generalizable, the training set must be
large enough, making its suitability for AL applications an open challenge [30–32]. Some
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studies in the remote sensing domain were developed to address this gap. In [30,32], the
authors proposed a deep learning-based AL approach by training the same convolutional
neural network incrementally across iterations and smoothening the decision boundaries
of the model using the Markov random field model and a best-versus-second best labeling
approach. This allows the introduction of additional data variability in the final training
dataset. Wu et al. [31] combined transfer learning, active classification and segmentation
techniques for vehicle detection. By combining different techniques, they were able to
produce a classification mechanism that performed well when the amount of training data
is limited. However, the exploration of advanced deep learning classifiers in AL is still
limited. In [33], the authors showed that deep learning classifiers performs well on LULC
classification, but are still not generalizable for different geographical regions or periods.
Specifically, AL methods are still incapable of providing generalizable deep learning
classifiers, which benefit from multiple advantages. The development of convolutional
neural networks with both two- and three-dimensional convolutions was explored by
Roy et al. [34] who reported superior classification performance on benchmark datasets.
However, many training data were used to produce the final classification map.

Selecting an efficient selection criterion is particularly important to find the instances
closest to the decision border (i.e., instances difficult to classify) [35]. Therefore, many AL
related studies focus on the design of the query/acquisition function [13].

2.1. Non-Informed Selection Criteria

Only one non-informed (i.e., random) selection criterion was found in the literature.
Random sampling selects unlabeled instances without considering any external informa-
tion produced by the chooser. Since the method for selecting the unlabeled instances
is random, this method disregards the usage of a chooser and is comparatively worse
than any other selection criterion. However, random sampling is still a powerful baseline
method [27].

2.2. Ensemble-Based Selection Criteria

Ensemble disagreement is based on the class predictions of a set of classifiers. The
disagreement between all the predictions for a given instance is a common measure for
uncertainty, although computationally inefficient [11,14]. It is calculated using the set of
classifications over a single instance, given by the number of votes assigned to the most
frequent class [35]. This method was implemented successfully for complex applications
such as deep active learning [11].

Multiview [36] consists on the training of multiple independent classifiers using
different views, which correspond to the selection of subsets of features or instances in
the dataset. Therefore, it can be seen as a bootstrap aggregation (bagging) ensemble
disagreement method. It is represented by the maximum disagreement score out of a set of
disagreements calculated for each view [35]. A lower value for this metric means a higher
classification uncertainty. Multiview-based maximum disagreement has been successfully
applied to hyperspectral image classification [37,38].

An adapted disagreement criterion for an ensemble of k-nearest neighbors is proposed
in [14]. This method employs a k-nearest neighbors classifier and computes an instance’s
classification uncertainty based on the neighbors’ class frequency using the maximum
disagreement metric over varying values for k. As a result, this method is comparable to
computing the dominant class’ score over a weighted k-nearest neighbors classifier. This
method was also used on a multimetric active learning framework by Zhang et al. [39].

Another relevant ensemble-based selection criterion is the binary random forest-based
query model [13]. This method employs a one-versus-one ensemble method to demonstrate
an efficient data selection method using the estimated probability of each binary random
forest and determining the classification uncertainty based on the probabilities closest
to 0.5 (i.e., the least separable pair of classes is used to determine the uncertainty value).
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However, this study fails to compare the proposed method with other benchmark methods,
such as random sampling.

2.3. Entropy-Based Criteria

Several contributions have focused on entropy-based querying. The application of
entropy is common among active deep learning applications [26], where the training of an
ensemble of classifiers is often too expensive.

Entropy Query-by-Bagging (EQB), also defined as maximum entropy [12], is an
ensemble approach of the entropy selection criterion, originally proposed in [40]. This
strategy uses the set of predictions produced by the ensemble classifier to calculate the
many entropy measurements. The estimated uncertainty measure for one instance is given
by the maximum entropy within that set. EQB has been observed to be an efficient selection
criterion. Specifically, Shrivastava and Pradhan [35] applied EQB on hyperspectral remote
sensing imagery using Support Vector Machines (SVM) and Extreme Learning Machines
(ELM) as choosers, achieving optimal results when combining EQB with ELM. Another
study successfully implemented this method on an active deep learning application [12].
Another study improved over this method with a normalized EQB selection criterion [41].

2.4. Other Relevant Criteria

Margin Sampling is a SVM-specific criterion, based on the distance of a given point
to the SVM’s decision boundary [35]. This method is less popular than the remaining
methods because it is limited to one type of chooser (SVMs). One extension of this method
is the multi-class level uncertainty [35], calculated by subtracting the instance’s distance to
the decision boundaries of the two most probable classes [42].

The Mutual Information-based (MI) criterion selects the new training instances by
maximizing the mutual information between the classifier and class labels in order to select
instances from regions that are difficult to classify. Although this method is commonly
used, it is frequently outperformed by the breaking ties selection criterion [43,44].

The breaking ties (BT) selection criterion was originally introduced by Luo et al. [45].
It consists of the subtraction between the probabilities of the two most likely classes.
Another related method is Modified Breaking Ties scheme (MBT), which aims at finding
the instances containing the largest probabilities for the dominant class [44,46]

Another type of selection criteria identified is the loss prediction method [25]. This
method replaces the selection criterion with a predictor whose goal is to estimate the
chooser’s loss for a given prediction. This allows the new classifier to estimate the predic-
tion loss on unlabeled instances and select the ones with the highest predicted loss.

Some of the literature fails to specify the strategy employed, although inferring it is
generally intuitive. For example, Ertekin et al. [47] successfully used AL to address the
imbalanced learning problem. They employed an ensemble of SVMs as the chooser, as
well as an ensemble-based selection criterion. All of the research found related to this topic
focuses on the improvement of AL through modifications on the selection criterion and
classifiers used. None of these publications propose significant variations to the original
AL framework.

3. Artificial Data Generation Approaches

The generation of artificial data is a common approach to address imbalanced learning
tasks [21], as well as improve the effectiveness of supervised learning tasks [48]. In recent
years, some sophisticated data generation approaches have been developed. However, the
scope of this work is to propose the integration of a generator within the AL framework.
To do this, we focus on heuristic data generation approaches, specifically, oversamplers.

Heuristic data resampling methods employ local and/or global information to gen-
erate new, relevant, non-duplicate instances. These methods are most commonly used to
populate minority classes and balance the between-class distribution of a dataset. The Syn-
thetic Minority Oversampling Technique (SMOTE) [49] is a popular heuristic oversampling
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algorithm, proposed in 2002. The simplicity and effectiveness of this method contributes
to its prevailing popularity. It generates a new instance through a linear interpolation of
a randomly selected minority-class instance and one of its randomly selected k-nearest
neighbors. The implementation of SMOTE for LULC classification tasks has been found to
improve the quality of the predictors used [50,51]. Despite its popularity, its drawbacks
motivates the development of other oversampling methods [52].

Geometric SMOTE (G-SMOTE) [52] introduces a modification of the SMOTE algorithm
in the data generation mechanism to produce artificial instances with higher variability.
Instead of generating artificial data as a linear combination of the parent instances, it is done
within a deformed, truncated hyper-spheroid. G-SMOTE generates an artificial instance −→z
within a hyper-spheroid, formed by selecting a minority instance −→x and one of its nearest
neighbors −→y , as shown in Figure 2. The truncation and deformation parameters define the
shape of the spheroid’s geometry. The method also modifies the selection strategy for the
k-nearest neighbors, accepting the generation of artificial instances using instances from
different classes, as shown in Figure 2. The modification of both selection and generation
mechanisms addresses the main drawbacks found in SMOTE, the generation of both noisy
data (i.e., the generation of minority class instances within majority class regions) and
near-duplicate minority class instances [52]. G-SMOTE has shown superior performance
when compared with other oversampling methods for LULC classification tasks, regardless
of the classifier used [53].

Figure 2. Example of G-SMOTE’s generation process. G-SMOTE randomly selects instance −→x and
one of its nearest neighbors −→y to produce instance −→z .

4. Proposed Method

Within the literature identified, most of the work developed in the AL domain re-
volves around improving the quality of classification algorithms and/or selection criteria.
Although these methods allow earlier convergence of the AL iterative process, the impact
of these methods are only observed between iterations. Consequently, none of these contri-
butions focus on the definition of decision borders within iterations. The method proposed
in this paper modifies the AL framework by introducing an artificial data generation step
within AL’s iterative process. We define this component as the generator, and it is intended
to be integrated into the AL framework, as shown in Figure 3.

This modification, by using a new source of data to augment the training set, leverages
the data annotation work conducted by the human operator. The artificial data generated
between iterations reduce the amount of labeled data required to reach optimal perfor-
mance and lower the amount of human labor required to train a classifier to its optimal



Remote Sens. 2021, 13, 2619 8 of 20

performance. This process lowers the annotation and overall training costs by translating
some of the annotation cost into computational cost.
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Figure 3. Proposed AL framework. This paper’s contribution comprises a change in the AL frame-
work through the introduction of a data generation mechanism, represented as the generator (marked
with C), which is used to add artificial instances to the training dataset.

This method leverages the capability of artificial data to introduce more data vari-
ability into the augmented dataset and facilitate the chooser’s training phase with a more
consistent definition of the decision boundaries at each iteration. Therefore, any algorithm
capable of producing artificial data, be it agnostic or specific to the domain, can be em-
ployed. The artificial data are only used to train the classifiers involved in the process and
are discarded once the training phase is completed. The remaining steps in the AL frame-
work remain unchanged. This method addresses the limitations found in the previous
sections:

1. The convergence of classification performance should be anticipated with the clearer
definition of the decision boundaries across iterations.

2. Annotation cost is expected to be reduced as the need for labeled instances reduces
along with the early convergence of the classification performance.

3. The class imbalance bias observed in typical classification tasks, as well as in AL, is
mitigated by balancing the class frequencies at each iteration.

Although the performance of this method is shown within a LULC classification
context, the proposed framework is independent of the domain. The high dimensionality
of remotely sensed imagery makes its classification particularly challenging when the
available labeled data are scarce and/or come at a high cost, being subjected to the curse of
dimensionality. Consequently, it is a relevant and appropriate domain to test this method.
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5. Methodology

In this section, we describe the datasets, evaluation metrics, oversampler, classifiers,
software used and the procedure developed. We demonstrate the proposed method’s
efficiency over seven datasets, sampled from publicly available, well-known remote sensing
hyperspectral scenes frequently found in the remote sensing literature. The datasets and
sampling strategy are described in Section 5.1. On each of these datasets, we apply
three different classifiers over the entire training set to estimate the optimal classification
performance, the original AL framework as the baseline reference and the proposed method
using G-SMOTE as a generator, described in Section 5.2. The metrics used to estimate the
performance of these algorithms are described in Section 5.3. Finally, the experimental
procedure is described in Section 5.4.

Our methodology focuses on two objectives: (1) comparison of optimal classification
performance among active learners and traditional supervised learning; and (2) comparison
of classification convergence efficiency among AL frameworks.

5.1. Datasets

The datasets used were extracted from publicly available repositories containing
hyperspectral images and ground truth data. Additionally, all datasets were collected
using the same sampling procedure. The description of the hyperspectral scenes used in
this study is provided in Table 1. These scenes were chosen because of their popularity
in the research community and their high baseline classification scores. Consequently,
demonstrating an outperforming method in this context is particularly challenging and
valuable.

Table 1. Description of the hyperspectral scenes used in this experiment. The column “Res. (m)” refers to the resolution of
the sensors (in meters) that captured each of the scenes.

Dataset Sensor Location Dimension Bands Res. (m) Classes

Botswana Hyperion Okavango Delta 1476 × 256 145 30 14
Salinas A AVIRIS California USA 86 × 83 224 3.7 6

Kennedy Space Center AVIRIS Florida USA 512 × 614 176 18 16
Indian Pines AVIRIS NW Indiana USA 145 × 145 220 20 16

Salinas AVIRIS California USA 512 × 217 224 3.7 16
Pavia University ROSIS Pavia Italy 610 × 610 103 1.3 9

Pavia Centre ROSIS Pavia Italy 1096 × 1096 102 1.3 9

The Indian Pines scene [54] is composed of agriculture fields in approximately two
thirds of its coverage and low density built up areas and natural perennial vegetation
in the remainder of its area (see Figure 4a). The Pavia Centre and University scenes are
hyperspectral, high-resolution images containing ground truth data composed of urban-
related coverage (see Figure 4b,c). The Salinas and Salinas A scenes contain at-sensor
radiance data. As a subset of Salinas, the Salinas A scene contains contains the vegetable
fields present in Salinas, and the latter is also composed of bare soils and vineyard fields
(see Figure 4d,e). The Botswana scene contains ground truth data composed of seasonal
swamps, occasional swamps, and drier woodlands located in the distal portion of the delta
(see Figure 4f). The Kennedy Space Center scene contains a ground truth composed of both
vegetation and urban-related coverage (see Figure 4g).
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(a) (b) (c) (d) (e) (f) (g)

Figure 4. Gray scale visualization of a band (top row) and ground truth (bottom row) of each scene used in this study:
(a) Indian Pines; (b) Pavia Centre; (c) Pavia University; (d) Salinas; (e) Salinas A; (f) Botswana; and (g) Kennedy Space
Center.

The sampling strategy is similar for all datasets. The pixels without a ground truth
label are first discarded. All the classes with cardinality lower than 150 are also dis-
carded. This is done to maintain feasible Imbalance Ratios (IR) across datasets (where

IR =
count(Cmaj)

count(Cmin)
). Finally, a stratified sample of 1500 instances are selected for the experi-

ment. The resulting datasets are described in Table 2. The motivation for this strategy is
three fold: (1) reduce the datasets to a manageable size and allow the experimental proce-
dure to be completed within a feasible time frame; (2) ensure the relative class frequencies
in the scenes are preserved; and (3) ensure equivalent analyses across datasets and AL
frameworks. In this context, a fixed number of instances per dataset is especially important
to standardize the AL-related performance metrics.

Table 2. Description of the datasets collected from each corresponding scene. The sampling strategy is similar to all scenes.

Dataset Features Instances Min. Instances Maj. Instances IR Classes

Botswana 145 1500 89 154 1.73 12
Salinas A 224 1500 109 428 3.93 6

Kennedy Space Center 176 1500 47 272 5.79 12
Indian Pines 220 1500 31 366 11.81 12

Salinas 224 1500 25 312 12.48 16
Pavia University 103 1500 33 654 19.82 9

Pavia Centre 102 1500 27 668 24.74 9

5.2. Machine Learning Algorithms

We use two different types of ML algorithms: a data generation algorithm to form the
generator and a classification algorithms to calculate the classification uncertainties in the
unlabeled dataset and predict the class labels in the validation and test sets.

Although any method capable of generating artificial data can be used as a gen-
erator, the one used in this experiment is an oversampler, originally developed to deal
with imbalanced learning problems. Specifically, we chose G-SMOTE, a state-of-the-art
oversampler.
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Three classification algorithms are used. We use different types of classifiers to test the
framework’s performance under varying situations: neighbors-based, linear and ensemble
models. The neighbors-based classifier chosen is K-nearest neighbors (KNN) [55], a logistic
regression (LR) [56] is used as the linear model, and a random forest classifier (RFC) [57] is
used as the ensemble model.

The acquisition function is completed by testing three different selection criteria.
Random selection is used as a baseline selection criterion, whereas entropy and breaking
ties are used due to their popularity and independence of the classifier used.

5.3. Evaluation Metrics

Since the datasets used in this experiment have an imbalanced distribution of class
frequencies, metrics such as the Overall Accuracy (OA) and Kappa coefficient are insufficient
to accurately depict classification performance [58,59]. Instead, metrics such as Producer’s
Accuracy (or Recall) and User’s Accuracy (or Precision) can be used. Since they consist of
ratios based on True/False Positives (TP and FP) and Negatives (TN and FN), they provide
per class information regarding the classifier’s classification performance. However, in this
experiment, the meaning and number of classes available in each dataset vary, making
these metrics difficult to synthesize.

The performance metric Geometric mean (G-mean) and F-score are less sensitive to the
data imbalance bias [60,61]. Therefore, we employ both of these scorers. G-mean consists
of the geometric mean of Speci f icity = TN

TN+FP and Sensitivity = TP
TP+FN (also known as

Recall) [61]. Both metrics are calculated in a multi-class context considering a one-versus-all
approach. For multi-class problems, the G-mean scorer is calculated as its average of per
class values:

G-mean =
√

Sensitivityi × Speci f icityi

The F-score performance metric is the harmonic mean of Precision and Recall. The
two metrics are also calculated considering a one-versus-all approach. The F-score for the
multi-class case can be calculated using its average per class values [62]:

F-score = 2
Precision× Recall
Precision + Recall

The comparison of classification convergence across AL frameworks and selection
criteria is done using two AL-specific performance metrics. Particularly, we follow the
recommendations found in [22]. Each AL configuration is evaluated using the Area Under
the Learning Curve (AULC) performance metric. It is the sum of the classification perfor-
mance values of all iterations. To facilitate the analysis of the results, we fix the range of
this metric within [0, 1] by dividing it by the total number of iterations (i.e., the maximum
performance area).

The Data Utilization Rate (DUR) [63] metric consists of the ratio between the number
of instances required to reach a given G-mean score threshold by an AL strategy and an
equivalent baseline strategy. For easier interpretability, we simplify this metric by using
the percentage of training data used by an AL strategy to reach the performance threshold,
instead of presenting these values as a ratio of the baseline strategy. The DUR metric is
measured at nine different performance levels, between 0.6 and 0.95 G-mean scores at a
0.05 step.

5.4. Experimental Procedure

A common practice in methodological evaluations is the implementation of an of-
fline experiment [64]. It consists of using an existing set of labeled data as a proxy for
the population of unlabeled instances. Because the dataset is already fully labeled, the
supervisor’s typical annotation process involved in each iteration is done at zero cost.
Each AL and classifier configuration is tested using a stratified five-fold cross validation
testing scheme. For each round, the larger partition is split in a stratified fashion to form a
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training and validation set (containing 20% of the original partition). The validation set
is used to evaluate the convergence efficiency of active learners; the chooser’s classifica-
tion performance metrics and amount of data points used at each iteration are used to
compute the AULC and DUR. Additionally, within the AL iterative process, the classifier
with optimal performance on the validation set is evaluated using the test set. In order to
further reduce possible initialization biases, this procedure is repeated three times with
different initialization seeds and the results of all runs are averaged (i.e., each configuration
is trained and evaluated 15 times). Finally, the maximum performance lines are calculated
using the same approach. In those cases, the validation set is not used. The experimental
procedure is depicted in Figure 5.

Dataset

K1 K2 K3 K4 K5

5-fold CV

Stratified Split

Validation SetTraining SetTest Set

Active LearnerClassifier

PredictPredict Predict TrainTrain

Maximum Performance

Benchmark

AL convergence testing

DURAULC

AssessAssess

Augm. Dataset

Select. Crit.

Uncert.Map

Oracle Generator

Data Generation

Chooser

F-ScoreG-Mean

Figure 5. Experimental procedure. The datasets extracted from hyperspectral scenes are split into
five folds. One of those (e.g., K1) is used to test the optimal performance of AL algorithms and the
classification without AL. The training set is used to iterate AL algorithms and train classifiers. The
validation set is used to test the convergence of AL algorithms. The results are averaged over the five
folds across each of the three different initializations of this procedure.

To make the AL-specific metrics comparable among active learners, the configurations
of the different frameworks must be similar. For each dataset, the number of instances is
constant to facilitate the analysis of the same metrics.

In most practical AL applications, it is assumed that the number of instances in the ini-
tial training sample is too small to perform hyperparameter tuning. Consequently, in order
to ensure realistic results, our experimental procedure does not include hyperparameter
optimization. The predefined hyperparameters are shown in Table 3. They are set up based
on general recommendations and default settings for the classifiers and generators used.

The AL iterative process is set up with a randomly selected initial training sample
with 15 initial samples. At each iteration, 15 additional samples are added to the training
set. This process is stopped after 49 iterations, once 50% of the entire dataset (i.e., 78% of
the training set) is added to the augmented dataset.
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Table 3. Hyper-parameter definition for the classifiers and generator used in the experiment.

Classifier Hyperparameters Values

LR maximum iterations 10,000
solver sag
penalty None

KNN # neighbors 5
weights uniform
metric euclidean

RF maximum tree depth None
# estimators 100
criterion gini

Generator

G-SMOTE # neighbors 5
deformation factor 0.5
truncation factor 0.5

5.5. Software Implementation

The experiment was implemented using the Python programming language, along
with the Python libraries Scikit-Learn (https://scikit-learn.org/stable/ (accessed on 2
July 2021)) [65], Imbalanced-Learn (https://imbalanced-learn.org/en/stable/ (accessed
on 2 July 2021)) [66], Geometric-SMOTE (https://geometric-smote.readthedocs.io/en/
latest/?badge=latest (accessed on 2 July 2021)), Cluster-Over-Sampling (https://cluster-
over-sampling.readthedocs.io/en/latest/?badge=latest (accessed on 2 July 2021)), and
Research-Learn (https://research-learn.readthedocs.io/en/latest/?badge=latest (accessed
on 2 July 2021)). All functions, algorithms, experiments, and results are provided in the
GitHub repository of the project (https://github.com/joaopfonseca/research/ (accessed
on 2 July 2021)).

6. Results and Discussion

The evaluation of the different AL frameworks in a multiple dataset context should
not rely uniquely on the mean of the performance metrics across datasets. Demšar [67]
recommended the use of mean ranking scores, since the performance levels of the different
frameworks varies according to the data it is being used on. Consequently, evaluating these
performance metrics solely based on their mean values might lead to inaccurate analyses.
Accordingly, the results of this experiment are analyzed using both the mean ranking
and absolute scores for each model. The rank values are assigned based on the mean
scores resulting from three different initializations of five-fold cross validation for each
classifier and active learner. The goal of this analysis is to understand whether the proposed
framework (AL with the integration of an artificial data generator) is capable of using fewer
data from the original dataset while simultaneously achieving better classification results
than the standard AL framework, i.e., guarantee a faster classification convergence.

6.1. Results

Table 4 shows the average rankings and standard deviations across datasets of the
AULC scores for each active learner.

The mean AULC absolute scores are provided in Table 5. These values are computed
as the mean of the sum of the scores of a specific performance metric over all iterations (for
an AL configuration). In other words, these values correspond to the average AULC over
7 datasets× 5 f olds× 3 initializations.

The average DURs are shown in Table 6. They were calculated for various G-mean
scores thresholds, varying at a step of 5% between 60% and 95%. Each row shows the
percentage of training data required by the different AL configurations to reach that specific
G-mean score.

https://scikit-learn.org/stable/
https://imbalanced-learn.org/en/stable/
https://geometric-smote.readthedocs.io/en/latest/?badge=latest
https://geometric-smote.readthedocs.io/en/latest/?badge=latest
https://cluster-over-sampling.readthedocs.io/en/latest/?badge=latest
https://cluster-over-sampling.readthedocs.io/en/latest/?badge=latest
https://research-learn.readthedocs.io/en/latest/?badge=latest
https://github.com/joaopfonseca/research/
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Table 4. Mean rankings of the AULC metric over the different datasets (7), folds (5), and runs (3)
used in the experiment. This means that the use of G-SMOTE almost always improves the results of
the original framework.

Classifier Evaluation Metric Standard Proposed

KNN F-score 2.00 ± 0.0 1.00 ± 0.0
KNN G-mean 2.00 ± 0.0 1.00 ± 0.0

LR F-score 1.71 ± 0.45 1.29 ± 0.45
LR G-mean 2.00 ± 0.0 1.00 ± 0.0
RF F-score 1.86 ± 0.35 1.14 ± 0.35
RF G-mean 2.00 ± 0.0 1.00 ± 0.0

Table 5. Average AULC of each AL configuration tested. Each AULC score is calculated using the
G-mean scores of each iteration in the validation set. By the end of the iterative process, each AL
configuration used a total of 750 of the 960 instances that compose the training set.

Classifier Evaluation Metric Standard Proposed

KNN F-score 0.762 ± 0.131 0.794 ± 0.123
KNN G-mean 0.864 ± 0.079 0.886 ± 0.073

LR F-score 0.839 ± 0.119 0.843 ± 0.116
LR G-mean 0.907 ± 0.074 0.911 ± 0.071
RF F-score 0.810 ± 0.109 0.819 ± 0.1
RF G-mean 0.890 ± 0.068 0.901 ± 0.059

Table 6. Mean data utilization of AL algorithms, as a percentage of the training set.

G-Mean Score Classifier Standard Proposed

0.60 KNN 4.0% 2.1%
0.60 LR 2.2% 2.1%
0.60 RF 2.2% 2.1%
0.65 KNN 5.6% 2.8%
0.65 LR 3.0% 2.7%
0.65 RF 3.1% 2.6%
0.70 KNN 7.9% 4.1%
0.70 LR 4.2% 4.1%
0.70 RF 4.5% 3.6%
0.75 KNN 13.5% 7.1%
0.75 LR 7.2% 6.6%
0.75 RF 6.6% 5.4%
0.80 KNN 24.4% 16.9%
0.80 LR 13.1% 11.7%
0.80 RF 11.6% 9.2%
0.85 KNN 29.8% 23.6%
0.85 LR 19.8% 18.8%
0.85 RF 23.1% 17.3%
0.90 KNN 41.0% 36.1%
0.90 LR 28.1% 24.8%
0.90 RF 37.1% 30.3%
0.95 KNN 71.3% 69.1%
0.95 LR 45.8% 40.2%
0.95 RF 64.6% 62.2%

The DUR of the proposed method relative to the baseline method is shown in Figure 6.
A DUR below 1 means that the proposed framework requires fewer data to reach the same
performance threshold (as a percentage, relative to the amount of data required by the
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baseline framework). For instance, in the upper left graphic, we can see that the proposed
framework achieves 90% classification using F-score while using 91% of the amount of
data used by the traditional AL framework, in other words 9% fewer data.
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1.00
K
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N

F-score G-mean

0.80

0.85

0.90
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Standard

60 65 70 75 80 85 90 95
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0.85
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1.05

R
F

60 65 70 75 80 85 90 95

Performance Thresholds

Figure 6. Mean data utilization rates. The y-axis shows the percentage of data (relative to the baseline
AL framework) required to reach the different performance thresholds.

The averaged optimal classification scores are shown in Table 7. The maximum perfor-
mance (MP) classification scores are shown as a benchmark and represent the performance
of the corresponding classifier using the entire training set.

Table 7. Optimal classification scores. The Maximum Performance (MP) classification scores are
calculated using classifiers trained using the entire training set.

Classifier Evaluation Metric MP Standard Proposed

KNN F-score 0.838 ± 0.106 0.835 ± 0.115 0.843 ± 0.105
KNN G-mean 0.907 ± 0.063 0.904 ± 0.069 0.912 ± 0.061

LR F-score 0.890 ± 0.084 0.883 ± 0.096 0.887 ± 0.097
LR G-mean 0.935 ± 0.052 0.931 ± 0.059 0.938 ± 0.055
RF F-score 0.859 ± 0.083 0.866 ± 0.081 0.869 ± 0.08
RF G-mean 0.918 ± 0.051 0.921 ± 0.051 0.930 ± 0.043

6.2. Statistical Analysis

The methods used to test the experiment’s results must be appropriate for a multi-
dataset context. Therefore, the statistical analysis is performed using the Wilcoxon signed-
rank test [68] as a post hoc analysis. The variable used for this test is the data utilization rate
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based on the G-mean performance metric, considering the various performance thresholds
in Table 6.

The Wilcoxon signed-rank test results are shown in Table 8. We test as null hypothesis
that the performance of the proposed framework is the same as the original AL framework.
The null hypothesis is rejected in all datasets.

Table 8. Adjusted p-values using the Wilcoxon signed-rank method. Bold values are statistically
significant at a level of α = 0.05. The null hypothesis is that the performance of the proposed
framework is similar to that of the original framework.

Dataset p-Value Significance

Botswana 3.8× 10−3 TRUE
Indian Pines 2.3× 10−4 TRUE

Kennedy Space Center 1.3× 10−4 TRUE
Pavia Centre 4.3× 10−3 TRUE

Pavia University 4.6× 10−5 TRUE
Salinas 4.6× 10−5 TRUE

Salinas A 3.0× 10−3 TRUE

6.3. Discussion

This paper expands the AL framework by adding an artificial data generator into its
iterative process. This modification is done to accelerate the classification convergence
of the standard AL procedure, which is reflected in the reduction of the amount of data
necessary to reach better classification results.

The convergence efficiency of the proposed method is always higher than the baseline
AL framework, with the exception of one comparison, as shown in Table 4 and Figure 6.
This means the proposed AL framework using data generation was able to outperform the
baseline AL in nearly all scenarios.

The mean AULC scores in Table 5 show a significant improvement in the performance
of AL when a generator is used. The mean performance of the proposed framework is
always better than the baseline framework. This improvement is explained by:

1. There is earlier convergence of AL, i.e., it requires fewer data to achieve comparable
performance levels. This effect is shown in Table 6, where we found that the proposed
framework always uses fewer data for similar performance levels, regardless of the
classifier used.

2. There is higher optimal classification performance, i.e., it reaches higher performance
levels overall. This effect is shown in Table 7, where we found that using a generator
in AL led to a better classification performance and the capability of outperforming
the MP threshold.

Our results show statistical significance in every dataset. The proposed framework had
a superior performance with statistical significance on each dataset at a level of α = 0.05.
This indicates that, regardless of the context under which an AL algorithm is used, the
proposed framework reduces the amount of data necessary in the AL’s iterative process.

This paper introduces the concept of applying a data generation algorithm in the AL
framework. This was done with the implementation of a recent state-of-the-art general-
ization of a popular data generation algorithm. However, since this algorithm is based on
heuristics, future work should focus on improving these results through the design of new
data generation mechanisms, at the cost of additional computational power. In addition,
we also noticed significant standard errors in our experimental results (see Section 6.1).
This indicates that AL procedures seem to be particularly sensitive to the initialization
method, which is still a limitation of AL, regardless of the framework and configurations
used. This is consistent with the findings in [22], which future work should attempt to
address. Although using a generator marginally reduced this standard error, it is not
sufficient to address this specific limitation.
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7. Conclusions

The aim of this experiment was to test the effectiveness of a new AL framework that
introduces artificial data generation in its iterative process. The experiment was designed to
test the proposed method under particularly challenging conditions, where the maximum
performance line is naturally high in most datasets. The element that constitutes the
generator component was set up in a plug-and-play scheme, without significant tuning of
the G-SMOTE oversampler. Using a generator in AL improved the original AL framework
in all scenarios. These results could be further improved through the modification and
more intense tuning of the data generation strategy. In our experiment, artificial data
were generated only to match each non-majority class frequency with the majority class
frequency, strictly balancing the class distribution. Generating a larger amount of data for
all classes can further improve these results.

The high performance scores for the baseline AL framework made the achievement
of significant improvements over the traditional AL framework under these conditions
particularly meaningful. The advantage of the proposed AL framework is shown in Table 6.
In most of the presented scenarios, there is a substantial reduction of data necessary to
reach a given performance threshold.

The results from this experiment show that using a data generator in the AL framework
will improve the convergence of the method. This framework successfully anticipates the
predictor’s optimal performance, as shown in Tables 4–6. Therefore, in a real application,
the annotation cost would have been reduced since fewer iterations and labeled instances
are necessary to reach near optimal classification performance.
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