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Abstract: Land cover maps are a critical tool to support informed policy development, planning,
and resource management decisions. With significant upsides, the automatic production of Land
Use/Land Cover maps has been a topic of interest for the remote sensing community for several
years, but it is still fraught with technical challenges. One such challenge is the imbalanced nature of
most remotely sensed data. The asymmetric class distribution impacts negatively the performance
of classifiers and adds a new source of error to the production of these maps. In this paper, we
address the imbalanced learning problem, by using K-means and the Synthetic Minority Oversam-
pling Technique (SMOTE) as an improved oversampling algorithm. K-means SMOTE improves the
quality of newly created artificial data by addressing both the between-class imbalance, as traditional
oversamplers do, but also the within-class imbalance, avoiding the generation of noisy data while
effectively overcoming data imbalance. The performance of K-means SMOTE is compared to three
popular oversampling methods (Random Oversampling, SMOTE and Borderline-SMOTE) using
seven remote sensing benchmark datasets, three classifiers (Logistic Regression, K-Nearest Neigh-
bors and Random Forest Classifier) and three evaluation metrics using a five-fold cross-validation
approach with three different initialization seeds. The statistical analysis of the results show that the
proposed method consistently outperforms the remaining oversamplers producing higher quality
land cover classifications. These results suggest that LULC data can benefit significantly from the use
of more sophisticated oversamplers as spectral signatures for the same class can vary according to
geographical distribution.

Keywords: LULC classification; imbalanced learning; oversampling; data augmentation; clustering

1. Introduction

The increasing amount of remote sensing missions granted the access to dense time se-
ries (TS) data at a global level and provides up-to-date, accurate land cover information [1].
This information is often materialized through Land Use and Land Cover (LULC) maps.
While Land Cover maps define the biophysical cover found on the surface of the earth,
Land Use maps define how it is used by humans [2]. Both Land Use and Land Cover maps
constitute an essential asset for various purposes, such as land cover change detection,
urban planning, environmental monitoring and natural hazard assessment [3]. However,
the timely production of accurate and updated LULC maps is still a challenge within the
remote sensing community [4]. LULC maps are produced based on two main approaches:
photo-interpreted by the human eye, or automatic mapping using remotely sensed data
and classification algorithms.

While photo-interpreted LULC maps rely on human operators and can be more reli-
able, they also present some significant disadvantages. The most important disadvantage is
the cost of production, in fact photo-interpretation consumes significant resources, both in
terms of money and time. Because of that, they are not frequently updated and not suitable
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for operational mapping over large areas. Finally, there is also the issue of overlooking rare
or small-area classes, due to factors such as the minimum mapping unit being used.

Automatic mapping with classification algorithms based on machine-learning (ML)
has been extensively researched and used to speed up and reduce the costs of the produc-
tion process [3,5,6]. Improvements in classification algorithms are sure to have a significant
impact on the efficiency with which remote sensing imagery is used. Several challenges
have been identified in order to improve automatic classification:

1. Improve the ability to handle high-dimensional datasets, in cases such as Multi-
spectral TS composites high-dimensionality increases the complexity of the problem
and creates a strain on computational power [7].

2. Improve class separability, as the production of an accurate LULC map can be hin-
dered by the existence of classes with similar spectral signatures, making these classes
difficult to distinguish [8].

3. Resilience to mislabelled LULC patches, as the use of photo-interpreted training data
poses a threat to the quality of any LULC map produced with this strategy, since
factors such as the minimum mapping unit tend to cause the overlooking of small-
area LULC patches and generates noisy training data that may reduce the prediction
accuracy of a classifier [9].

4. Dealing with rare land cover classes, due to the varying levels of area coverage for each
class. In this case using a purely random sampling strategy will amount to a dataset
with a roughly proportional class distribution as the one on the multi/hyperspectral
image. On the other hand, the acquisition of training datasets containing balanced
class frequencies is often unfeasible. This causes an asymmetry in class distribution,
where some classes are frequent in the training dataset, while others have little
expression [10,11].

The latter challenge is known, in machine learning, as the imbalanced learning prob-
lem [12]. It is defined as a skewed distribution of instances found in a dataset among
classes in both binary and multi-class problems [13]. This asymmetry in class distribu-
tion negatively impacts the performance of classifiers, especially in multi-class problems.
The problem comes from the fact that during the learning phase, classifiers are optimized
to maximize an objective function, with overall accuracy being the most common one [14].
This means that instances belonging to minority classes contribute less to the optimization
process, translating into a bias towards majority classes. As an example, a trivial classifier
can achieve 99% overall accuracy on a binary dataset where 1% of the instances belong to
the minority class if it classifies all instances as belonging to the majority class. This is an
especially significant issue in the automatic classification of LULC maps, as the distribution
of the different land-use classes tends to be highly imbalanced. Therefore, improvements
in the ability to deal with imbalanced datasets will translate into important progress in the
automatic classification of LULC maps.

There are three different types of approaches to deal with the class imbalance problem [6,15]:

1. Cost-sensitive solutions. Introduces a cost matrix to the learning phase with misclas-
sification costs attributed to each class. Minority classes will have a higher cost than
majority classes, forcing the algorithm to be more flexible and adapt better to predict
minority classes.

2. Algorithmic level solutions. Specific classifiers are modified to reinforce the learning
on minority classes. Consists on the creation or adaptation of classifiers.

3. Resampling solutions. Rebalances the dataset’s class distribution by removing major-
ity class instances and/or generating artificial minority instances. This can be seen
as an external approach, where the intervention occurs before the learning phase,
benefitting from versatility and independency from the classifier used.

Since resampling strategies represent a set of methods that are detached from classifiers
by operating at the data level, they allow the use of any off the shelf algorithm, without
the need for any type of changes or adaptions to the algorithm. Specifically, in the case of
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oversampling (defined below), the user is able to balance the dataset’s class distribution by
without the loss of information, which is not the case with undersampling techniques. This
is a significant advantage especially considering that most users in remote sensing are not
expert machine learning engineers.

Within resampling approaches there are three subgroups of approaches [6,15,16]:

1. Undersampling methods, which rebalance class distribution by removing instances
from the majority classes.

2. Oversampling methods, which rebalance datasets by generating new artificial in-
stances belonging to the minority classes.

3. Hybrid methods, which are a combination of both oversampling and undersampling,
resulting in the removal of instances in the majority classes and the generation of
artificial instances in the minority classes.

Resampling methods can be further distinguished between non-informed and heuris-
tic (i.e., informed) resampling techniques [15–17]. The former consist of methods that
duplicate/remove a random selection of data points to set class distributions to user-
specified levels, and are therefore a simpler approach to the problem. The latter consists
of more sophisticated approaches that aim to perform over/undersampling based on the
points’ contextual information within their data space.

The imbalanced learning problem is not new in machine learning but its relevancy has
been growing, as attested by [18]. The problem has also been addressed in the context of
remote sensing [19]. In this paper, we propose the application of a recent oversampler based
on SMOTE [20], the K-means SMOTE [21] oversampler, to address the imbalanced learning
problem in a multiclass context for LULC classification using various remote sensing
datasets. Specifically, we use seven land use datasets commonly used in research literature,
that vary among agricultural and urban land use. The K-means SMOTE algorithm couples
two different procedures in the generation of artificial data. The algorithm starts by
grouping the instances into clusters by using the K-means algorithm; next, the generation
of the artificial data is done using the smote algorithm, taking into consideration the
distribution of majority/minority cases in each individual cluster. The idea of starting with
a clustering procedure before the data generation phase is important in remote sensing
because the spectral signature of the different classes can change significantly based on the
geographical area in which it is represented. In other words, the spectral signature of a
specific class can vary greatly depending on the geography, meaning that often we will be
facing within-class imbalance [22].

In fact, we can decompose class imbalance into two different types: between-class im-
balance and within-class imbalance [21,23]. While the first refers to the overall asymmetry
between majority and minority classes, the second results from the fact that in different
areas of the input space there might be different levels of imbalance. Depending on the
complexity of the input space, different subclusters of minority and majority instances
may be present. In order to achieve a balance between minority and majority instances,
these subclusters should be treated separately. Assuming that the role of a classifier is to
create rules in such a way that it is able to isolate the different relevant sub-concepts that
represent both the majority and minority classes, the classifier will create multiple disjunct
rules that describe these concepts. If the input space is simple and the classes’ instances are
grouped together in a unique cluster, the classifier will only need to create (general) rules
that comprise large portions of instances belonging to the same class. To the contrary, if the
input space is complex and scatters through multiple small clusters, the classifier will need
to learn a more complex set of (specific) rules, which can be seen in Figure 1. It is important
to note that small clusters can happen both in the minority and majority class, although
they will tend to be more frequent in the minority class due to its underrepresentation.
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Majority class instance

Minority class instance

Figure 1. Example of a complex input space. In this example, a classifier would need to separate the
minority class’ samples across 4 distinguishable clusters (A, B, C and D).

The efficacy of K-means SMOTE is tested using different types of classifiers. To do so,
we employ both commonly used and/or state-of-the-art oversamplers as benchmarking
methods: random oversampling (ROS), SMOTE and Borderline-SMOTE (B-SMOTE) [24].
Additionally, as a baseline score we include classification results without the use of any
resampling method.

This paper is organized in 5 sections: Section 2 provides an overview of the state-of-art,
Section 3 describes the proposed methodology, Section 4 covers the results and discussion
and Section 5 presents the conclusions taken from this study.

This paper’s main contributions are:

• Propose a cluster-based multiclass oversampling method appropriate for LULC classi-
fication and compare its performance with the remaining oversamplers in a multiclass
context with seven benchmark LULC classification datasets. Allows us to check the
oversamplers’ performance across benchmark LULC datasets.

• Introducing a cluster-based oversampling algorithm within the remote sensing do-
main, as well as comparing its performance with the remaining oversamplers in a
multiclass context.

• Make available to the remote sensing community the implementation of the algorithm
in a Python library and the experiment’s source code.

2. Imbalanced Learning Approaches

Imbalanced learning has been addressed in three different ways: over/undersampling,
cost-sensitive training and changes/adaptations in the learning algorithms [6]. These
approaches impact different phases of the learning process, while over/undersampling
can be seen as a pre-processing step, cost-sensitive and changes in the algorithm imply a
more customized and complex intervention in the algorithms. In this section, we focus on
previous work related with resampling methods, while providing a brief explanation of
cost-sensitive and algorithmic level solutions.

All of the most common classifiers used for LULC classification tasks [3,5] are sensitive
to class imbalance [25]. Algorithm-based approaches typically focus on adaptations based
on ensemble classification methods [26] or common non-ensemble based classifiers such
as Support Vector Machines [27]. In [28], the reported results show that algorithm-based
methods have comparable performance to resampling methods.

Cost-sensitive solutions refer to changes in the importance attributed to each instance
through a cost matrix [29–31]. A relevant cost sensitive solution [29] uses the inverse class
frequency (i.e., 1/|Ci|, where Ci refers to the frequency of class i) to give higher weight
to minority classes. Cui et al. [30] extended this method by adding a hyperparameter
β to class weights as (1− β)/(1− β|Ci |). When β = 0, no re-weighting is done. When
β→ 1, weights are the inverse of the frequency class matrix. Another method [31] explores
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adaptations of cross-entropy classification loss by adding different formulations of class
rectification loss.

Resampling (over/undersampling) is the most common approach to imbalanced
learning in machine learning in general and remote sensing in particular [11]. The genera-
tion of artificial instances (i.e., augmenting the dataset), based on rare instances, is done
independently of any other step in the learning process. Once the procedure is applied, any
standard machine learning algorithm can be used. Its simplicity makes resampling strate-
gies particularly appealing for any user (especially the non-sophisticated user) interested
in applying several classifiers, while maintaining a simple approach. It is also important to
notice that over/undersampling methods can also be easily applied to multiclass problems,
common in LULC classification tasks.

2.1. Non-Informed Resampling Methods

There are two main non-informed resampling methods. Random Oversampling (ROS)
generates artificial instances through random duplication of minority class instances. This
method is used in remote sensing for its simplicity [32,33], even though its mechanism
makes the classifier prone to overfitting [34]. Ref. [33] found that using ROS returned
worse results than keeping the original imbalance in their dataset.

A few of the recent remote sensing studies employed Random Undersampling (RUS) [35],
which randomly removes instances belonging to majority classes. Although it’s not as
prone to overfitting as ROS, it incurs into information loss by eliminating instances from
the majority class [11], which can be detrimental to the quality of the results.

Another disadvantage of non-informed resampling methods is their performance-
wise inconsistency across classifiers. ROS’ impact on the Indian Pines dataset was found
inconsistent between Random Forest Classifiers (RFC) and Support Vector Machines (SVM)
and lowered the predictive power of an artificial neural network (ANN) [14]. Similarly,
RUS is found to generally lead to a lower overall accuracy due to the associated information
loss [14].

2.2. Heuristic Methods

The methods presented in this section appear as a means to overcome the insufficien-
cies found in non-informed resampling. They use either local or global information to
generate new, relevant, non-duplicated instances to populate the minority classes and/or
remove irrelevant instances from majority classes. In a comparative analysis between over-
and undersamplers’ performance for LULC classification [36] using the rotation forest
ensemble classifier, authors found that oversampling methods consistently outperformed
undersampling methods. This result led us to exclude undersampling from our study.

SMOTE [20] was the first heuristic oversampling algorithm to be proposed and has
been the most popular one since then, likely due to its fair degree of simplicity and quality
of generated data. It takes a random minority class sample and introduces synthetic
instances along the line segment that join a random k minority class nearest neighbor to
the selected sample. Specifically, a single synthetic sample −→z is generated within the
line segment of a randomly selected minority class instance −→x and one of its k nearest
neighbors −→y such that −→z = α−→x + (1− α)−→y , where α is a random real number between 0
and 1, as shown in Figure 2.
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Majority class instance

Minority class instance

Selected instance

Nearest Neighbors

Selected nearest neighbor

Generated instance

Figure 2. Example of SMOTE’s data generation process. SMOTE randomly selects instance −→x and
randomly selects one of its k-nearest neighbors−→y to produce−→z . Noisy instance−→r was generated by
randomly selecting −→q and randomly selecting its nearest neighbor −→p from a different minority class
cluster. Noisy instance −→c was generated by randomly selecting the noisy minority class instance −→a
and one of its nearest neighbors

−→
b .

A number of studies implement SMOTE within the LULC classification context and
reported improvements on the quality of the trained predictors [37,38]. Another study pro-
poses an adaptation of SMOTE on an algorithmic level for deep learning applications [39].
This method combines both typical computer vision data augmentation techniques, such
as image rotation, scaling and flipping on the generated instances to populate minority
classes. Another algorithmic implementation is the variational semi-supervised learning
model [40]. It consists of a generative model that allows learning from both labeled and
unlabeled instances while using SMOTE to balance the data.

Despite SMOTE’s popularity, its limitations have motivated the development of
more sophisticated oversampling algorithms [21,24,41–44]. Ref. [41] identify four major
weaknesses of the SMOTE algorithm, which can be summarized as:

1. Generation of noisy instances due to random selection of a minority instance to over-
sample. The random selection of a minority instance makes SMOTE oversampling
prone to the amplification of existing noisy data. This has been addressed by variants
such as B-SMOTE [24] and ADASYN [44].

2. Generation of noisy instances due to the selection of the k nearest neighbors. In the
event an instance (or a small number thereof) is not noisy but is isolated from the
remaining clusters, known as the “small disjuncts problem” [45], much like sample
−→
b from Figure 2, the selection of any nearest neighbor of the same class will have a

high likelihood of producing a noisy sample.
3. Generation of nearly duplicated instances. Whenever the linear interpolation is done

between two instances that are close to each other, the generated instance becomes
very similar to its parents and increases the risk of overfitting. G-SMOTE [41] attempts
to address both the k nearest neighbor selection mechanism problem as well as the
generation of nearly duplicated instances problem.

4. Generation of noisy instances due to the use of instances from two different minority
class clusters. Although an increased k could potentially avoid the previous problem,
it can also lead to the generation of artificial data between different minority clusters,
as depicted Figure 2 with the generation of point −→r using minority class instances −→p
and −→q . Cluster-based oversampling methods attempt to address this problem.

This last issue, the generation of noisy instances due to the existence of several minority
class clusters, is particularly relevant in remote sensing. It is frequent that instances
belonging to the same minority class can have different spectral signatures, meaning that
they will be clustered in different parts of the input space. For example, in the classification
of a hyperspectral scene dominated by agricultural activities, patches relating to urban areas
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may constitute a minority class. These patches frequently refer to different types of land use,
such as housing regions, small gardens, asphalt roads, etc., all these containing different
spectral signatures. In this context, the use of SMOTE will lead to the generation of noisy
instances of the minority class. This problem can be efficiently mitigated through the use
of a cluster-based oversampling method. According to our literature review cluster-based
oversampling approaches have never been applied in the context of remote sensing. On the
other hand, while there are references of the application of cluster-based oversampling in
the context of machine learning [21,42,43,46], the multiclass case is rarely addressed, which
is a fundamental requirement for the application of oversampling in the context of LULC.

Cluster-based oversampling approaches introduce an additional layer to SMOTE’s
selection mechanism, which is done through the inclusion of a clustering process. This
ensures that both between-class data balance and within-class balance is preserved. The
self-organizing map oversampling (SOMO) [43] algorithm transforms the dataset into a
2-dimensional input, where the areas with the highest density of minority samples are
identified. SMOTE is then used to oversample each of the identified areas separately. Clus-
tered Resampling SMOTE (CURE-SMOTE) [42] applies a hierarchical clustering algorithm
to discard isolated minority instances before applying SMOTE. Although it avoids noise
generation problems, it ignores within-class data distribution. Another method [46] uses
K-means to cluster the entire input space and applies SMOTE to clusters with the fewest
instances, regardless of their class label. The label of the generated instance is copied from
one of its parents. This method cannot ensure a balanced dataset since class imbalance is
not specifically addressed, but rather dataset imbalance.

K-means SMOTE [21] avoids noisy data generation by modifying the data selection
mechanism. It employs k-means clustering to identify safe areas using cluster-specific

Imbalance Ratio (IR, defined by
count(Cmajority)

count(Cminority)
) and determine the quantity of generated

samples per cluster based on a density measure. These samples are finally generated using
the SMOTE algorithm. The K-means SMOTE’s data generation process is depicted in
Figure 3. Note that the number of samples generated for each cluster varies according to
the sparsity of each cluster (the sparser the cluster is, the more samples will be generated)
and a cluster is rejected if the cluster’s IR surpasses the threshold. Therefore, this method
can be combined with any data generation mechanism, such as G-SMOTE. Additionally,
K-means SMOTE includes the SMOTE algorithm as a special case when the number of
clusters is set to one. Consequently, K-means SMOTE returns results as good as or better
than SMOTE.

Majority class instance

Minority class instance

Selected instance

Nearest Neighbors

Selected nearest neighbor

Generated instance

Figure 3. Example of K-means SMOTE’s data generation process. Clusters A, B and C are selected
for oversampling, whereas cluster D was rejected due to its high imbalance ratio. The oversampling
is done using the SMOTE algorithm and the k nearest neighbors selection only considers instances
within the same cluster.

Although no other study was found to implement cluster-based oversampling, an-
other study [19] compared the performance of SMOTE, ROS, ADASYN, B-SMOTE and
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G-SMOTE in a highly imbalanced LULC classification dataset. The authors found that
G-SMOTE consistently outperformed the remaining oversampling algorithms regardless
of the classifier used.

3. Methodology

The purpose of this work is to understand the performance of K-means SMOTE as
opposed to other popular and/or state-of-the-art oversamplers for LULC classification.
This was done using seven datasets with predominantly land use information, along with
three evaluation metrics and three classifiers to evaluate the performance of oversamplers.
In this section we describe the datasets, evaluation metrics, oversamplers, classifiers and
software used as well as the procedure developed.

3.1. Datasets

The datasets used were extracted from publicly available hyperspectral scenes. Infor-
mation regarding each of these scenes is provided in this subsection. The data collection
and preprocessing pipeline is shown in Figure 4 and is common to all hyperspectral scenes:

1. Data collection of publicly available hyperspectral scenes. The original hyperspectral
scenes and ground truth data were collected from a single publicly available data repos-
itory available here (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes (accessed on 29 June 2021)).

2. Conversion of each hyperspectral scene to a structured dataset and removal of in-
stances with no associated LULC class. This was done to reshape the dataset from
(h, w, b + gt) into a conventional dataframe of shape (h ∗ w, b + gt), where gt, h, w
and b represent the ground truth, height, width and number of bands in the scene,
respectively. The pixels without ground truth information were discarded from
further analysis.

3. Stratified random sampling to maintain similar class proportions on a sample of
10% of each dataset. This was done by computing the relative class frequencies
in the original hyperspectral scene (minus the class representing no ground truth
availability) and retrieving a sample that ensured the original relative class frequencies
remained unchanged.

4. Removal of instances belonging to a class with frequency lower than 20 or higher
than 1000. This was done to maintain the datasets to a practicable size due to com-
putational constraints, while conserving the relative LULC class frequencies and
data distribution.

5. Data normalization using the MinMax scaler. This ensured all features (i.e., bands)
were in the same scale. In this case, the data were rescaled between 0 and 1.

Public Remote Sensing 
Data Repositories

Conversion to 
Data Frame

Data 
Normalization

Stratified Random 
Sampling

Discard classes too rare 
to be used in 5-fold CV

Discard 
easy-to-classify/common 

classes

Discard Pixels without 
Groud Truth Data

Hyperspectral 
Image

Ground Truth

Preprocesed 
Dataset

(h, w, b)
(h*w, b+1)

(h, w, 1)

Figure 4. Data collection and preprocessing pipeline.

Table 1 provides a description of the final datasets used for this work, sorted according
to its IR. Figure 5 shows the original hyperspectral scene out of which the dataset used in

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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this experiment was extracted. In the representation of the ground truth of these scenes,
the blue regions in the ground truth of each hyperspectral scene represent unlabeled
regions (i.e., no ground truth was available). Particularly, in the Botswana and Kennedy
Space Center scenes the truth was photointerpreted in more limited regions of the scene.
However, the scenes are still represented as they were in order to maintain a standardized
analysis over all datasets extracted for the experiment.

Table 1. Description of the datasets used for this experiment.

Dataset Features Instances Min. Instances Maj. Instances IR Classes

Botswana 145 288 20 41 2.05 11
Pavia Centre 102 3898 278 879 3.16 7

Kennedy Space Center 176 497 23 80 3.48 11
Salinas A 224 535 37 166 4.49 6

Pavia University 103 2392 89 679 7.63 8
Salinas 224 4236 91 719 7.9 15

Indian Pines 220 984 21 236 11.24 11

(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Gray scale visualization of a band (top row) and ground truth (bottom row) of each scene used in this study.
(a) Botswana, (b) Pavia Center, (c) Pavia University, (d) Kennedy Space Center, (e) Salinas, (f) Salinas A, (g) Indian Pines.
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3.1.1. Botswana

The Botswana scene was acquired by the Hyperion sensor on the NASA EO-1 satellite
over the Okavango Delta, Botswana in 2001–2004 at a 30 m spatial resolution. Data
preprocessing was performed by the UT Center for Space Research. The scene comprised
a 1476× 256 pixels with 145 bands and 14 classes regarding land cover types in seasonal
and occasional swamps, as well as drier woodlands (see Figure 5a). The classes with rare
instances were Short mopane and Hippo grass.

3.1.2. Pavia Center and University

Both Pavia Center and University scenes were acquired by the ROSIS sensor. These
scenes were located in Pavia, northern Italy. Pavia Center is a 1096× 1096 pixels image with
102 spectral bands, whereas Pavia University is a 610× 610 pixels image with 103 spectral
bands. Both images had a geometrical resolution of 1.3 m and their ground truths were
composed of nine classes each (see Figure 5b,c). After data preprocessing, the classes with
rare instances were Asphalt and Bitumen (the class Shadows was removed for being too
rare for cross validation after random sampling).

3.1.3. Kennedy Space Center

The Kennedy Space Center scene was acquired by the AVIRIS sensor over the Kennedy
Space Center, Florida, on 23 March 1996. Out of the original 224 bands, water absorption
and low SNR bands were removed and a total of 176 bands at a spatial resolution of 18 m
were used. The scene was a 512× 614 pixel image and contains a total of 16 classes (see
Figure 5d). The classes with rare instances were hardwood swamp, slash pine and willow
swamp (both hardwood swamp and slash pine were removed for being too rare for cross
validation after random sampling).

3.1.4. Salinas and Salinas-A

These scenes were collected by the AVIRIS sensor over Salinas Valley, California and
contain at-sensor radiance data. Salinas was a 512× 217 pixels image with 224 bands
and 16 classes regarding vegetables, bare soil and vineyard fields (see Figure 5e). Salinas-
A, a subscene of Salinas, comprised 86× 83 pixels and contained six classes regarding
vegetables (see Figure 5f). These scenes had a geometrical resolution of 3.7 m. Salinas-A’s
minority class had the label “Brocoli_green_weeds_1” and Salina’s minority class had the
label “Lettuce_romaine_6wk”.

3.1.5. Indian Pines

The Indian Pines scene [47] was collected on 12 June 1992 and consists of AVIRIS
hyperspectral image data covering the Indian Pine Test Site 3, located in North-western
Indiana, USA. As a subset of a larger scene, it was composed of 145× 145 pixels (see
Figure 5g) and 220 spectral reflectance bands in the wavelength range 400 to 2500 nanome-
ters at a spatial resolution of 20 m. Approximately two thirds of this scene was composed
of agriculture and the other third was composed of forest and other natural perennial vege-
tation. Additionally, the scene also contained low density buildup areas. The classes with
rare instances were Alfalfa, Oats, Grass-pasture-mowed, Wheat and Stone-Steel-Towers
(which was removed for being too rare for cross validation after random sampling). After
data preprocessing, the classes with rare instances were Corn, Buildings-Grass-Trees-Drives
and Grass-Pasture.

3.2. Machine Learning Algorithms

To assess the quality of the K-means SMOTE algorithm, three other oversampling
algorithms were used for benchmarking. ROS and SMOTE were chosen for their simplicity
and popularity. B-SMOTE chosen as a popular variation of the SMOTE algorithm. We also
include the classification results of no oversampling (NONE) as a baseline.
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To assess the performance of each oversampler, we use the classifiers Logistic Regres-
sion (LR) [48], K-Nearest Neighbors (KNN) [49] and Random Forest (RF) [50]. This choice
was based on the classifiers’ popularity for LULC classification, learning type and training
time [5,14]. Since this is a multinomial classification task, for the LR classification we
adopted a one-versus-all approach for each label. The predicted label is assigned according
to the class predicted with highest probability.

3.3. Evaluation Metrics

Most of the satellite-based LULC classification studies (nearly 80%) employ Overall
Accuracy (OA) and the Kappa Coefficient [5]. Although, some authors argue that both
evaluation metrics, even when used simultaneously, are insufficient to fully address the
area estimation and uncertainty information needs [51,52]. Other metrics like User’s
Accuracy (or Precision) and Producer’s Accuracy (or Recall) are also common metrics to
evaluate per-class prediction power. These metrics consist of ratios employing the True
and False Positives (TP and FP, number of correctly/incorrectly classified instances of a
given class) and True and False Negatives (TNs and FNs, number of correctly/incorrectly
classified instances as not belonging to a given class). These metrics are formulated as
Precision = TP

TP+FP and Recall = TP
TP+FN . While metrics like OA and Kappa Coefficient are

significantly affected by imbalanced class distributions, F-Score is less sensitive to data
imbalance and a more appropriate choice for performance evaluation [53].

The datasets used presented significantly high IRs (see Table 1). Therefore, it was
especially important to attribute equal importance to the predictive power of all classes,
which did not happen with OA and Kappa Coefficient. In this study, we employed three
evaluation metrics: (1) G-mean, since it was not affected by skewed class distributions,
(2) F-Score, as it proved to be a more appropriate metric for this problem when compared
to other commonly used metrics [53], and (3) Overall Accuracy, for discussion purposes.

• The G-mean consists of the geometric mean of Speci f icity = TN
TN+FP and Sensitivity

(also known as Recall). For multiclass problems, The G-mean is expressed as:

G-mean =
√

Sensitivity× Speci f icity

• F-score is the harmonic mean of Precision and Recall. The F-score for the multi-class
case can be calculated using their average per class values [54]:

F-score = 2
Precision× Recall
Precision + Recall

• Overall Accuracy is the number of correctly classified instances divided by the total
amount of instances. Having c as the label of the various classes, Accuracy is given by
the following formula:

Accuracy =
∑
c

TPc

∑
c
(TPc + FPc)

In the case of G-mean and F-score, both metrics are computed for each label and their
unweighted mean is calculated (i.e., following a “macro” approach). In this study we
assume that all labels have an equivalent importance for the classification task.

3.4. Experimental Procedure

The procedure for the experiment started with the definition of a hyperparameter
search grid, where a list of possible values for each relevant hyperparameter in both
classifiers and oversamplers was stored. Based on this search grid, all possible combinations
of oversamplers, classifiers and hyperparameters were formed. Finally, for each dataset,
hyperparameter combination and initialization we used the evaluation strategy shown in
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Figure 6: k-fold cross-validation strategy where k = 5 to train each model defined and save
the averaged scores of each split.

Dataset

Validation Set

Training Set

Oversampling

No oversampling

Classifier F-Score

G-Mean

OA

K1

K2

K3

K4

K5

5-fold CV K-SMOTE
RFB-SMOTE
KNN

SMOTE

LR

Random

Train Assess

Predict

Result
Comparison

Figure 6. Experimental procedure. The performance metrics were averaged over the five folds across each of the three
different initializations of this procedure for a given combination of oversampler, classifier and hyperparameter definition.

In the five-fold cross validation strategy, a combination of oversampler, classifier
and hyperparameters vector was fit five times per dataset. Before the training phase,
the training set (containing 4

5 of the dataset) was oversampled using one of the methods
described (except for the baseline method NONE), creating an augmented dataset with the
exact same number of instances for each class. The newly formed training dataset was used
to train the classifier and the test set ( 1

5 of the dataset) was used to evaluate the performance
of the classifier. The evaluation scores were then averaged over the five times the process
was repeated. The range of hyperparameters used are shown in Table 2. The definition
of hyperparameters for the K-means SMOTE oversampler was defined according to the
recommendations discussed in the original K-means SMOTE paper [21].

Table 2. Hyper-parameters grid. * One cluster is generated in total, a corner case that mimics the
behavior of SMOTE.

Classifier Hyperparameters Values

LR maximum iterations 10,000
KNN # neighbors 3, 5, 8
RF maximum depth None, 3, 6

# estimators 50, 100, 200

Oversampler

K-means SMOTE # neighbors 3, 5
# clusters (as % of number of instances) 1 *, 0.1, 0.3, 0.5, 0.7, 0.9
Exponent of mean distance auto, 2, 5, 7
IR threshold auto, 0.5, 0.75, 1.0

SMOTE # neighbors 3, 5
BORDERLINE SMOTE # neighbors 3, 5

3.5. Software Implementation

The experiment was implemented using the Python programming language, using the
Scikit-Learn (https://scikit-learn.org/stable/ (accessed on 29 June 2021)) [55], Imbalanced-
Learn (https://imbalanced-learn.org/stable/ (accessed on 29 June 2021)) [56], Geometric-
SMOTE (https://geometric-smote.readthedocs.io/en/latest/?badge=latest (accessed on
29 June 2021)), Cluster-Over-Sampling (https://cluster-over-sampling.readthedocs.io/en/
latest/?badge=latest (accessed on 29 June 2021)) and Research-Learn (https://research-
learn.readthedocs.io/en/latest/?badge=latest (accessed on 29 June 2021)) libraries. All
functions, algorithms, experiments and results are provided at the GitHub repository of
the project (https://github.com/AlgoWit/publications (accessed on 29 June 2021)).

https://scikit-learn.org/stable/
https://imbalanced-learn.org/stable/
https://geometric-smote.readthedocs.io/en/latest/?badge=latest
https://cluster-over-sampling.readthedocs.io/en/latest/?badge=latest
https://cluster-over-sampling.readthedocs.io/en/latest/?badge=latest
https://research-learn.readthedocs.io/en/latest/?badge=latest
https://research-learn.readthedocs.io/en/latest/?badge=latest
https://github.com/AlgoWit/publications
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4. Results and Discussion

When evaluating the performance of an algorithm across multiple datasets, it is
generally recommended to avoid direct score comparisons and use classification rankings
instead [57]. This was done by assigning a ranking to oversamplers based on the different
combinations of classifier, metric and dataset used. These rankings were also used for the
statistical analyses presented in Section 4.2.

The rank values were assigned based on the mean validation scores resulting from
the experiment described in Section 3. The averaged ranking results were computed over
three different initialization seeds and a five fold cross validation scheme, returning a real
number within the interval [1, 5].

The hyperparameter optimization ensured that both oversamplers and classifiers were
well adapted to each of the datasets used in the experiment. Specifically, the optimization
of classifiers’ hyperparameters was not particularly relevant since our focus was to study
the relative performance scores across oversamplers. This provided insights on the quality
of the artificial data generated by each oversampler. The classifiers’ hyperparameter tuning
was done to avoid the over/underfitting of classifiers, since they were trained on the same
data subsets along with artificial data generated with different methods.

4.1. Results

The mean ranking of oversamplers is presented in Figure 7. This ranking was com-
puted by averaging the ranks of the mean cross-validation scores per dataset, oversampler
and classifier. K-means SMOTE achieved the best mean ranking across datasets with low
standard deviation.
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Figure 7. Results for mean ranking of oversamplers across datasets.
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The mean cross-validation scores are shown in Table 3. As discussed previously in
this section, the disparity of performance levels across datasets made the analysis of these
scores less informative.

Table 3. Mean cross-validation scores of oversamplers.

Classifier Metric NONE ROS SMOTE B-SMOTE K-SMOTE

LR Accuracy 0.906 ± 0.039 0.904 ± 0.04 0.904 ± 0.04 0.901 ± 0.04 0.909 ± 0.038
LR F-score 0.891 ± 0.041 0.893 ± 0.042 0.893 ± 0.042 0.890 ± 0.042 0.898 ± 0.04
LR G-mean 0.936 ± 0.025 0.940 ± 0.025 0.940 ± 0.025 0.937 ± 0.025 0.943 ± 0.024

KNN Accuracy 0.879 ± 0.043 0.865 ± 0.048 0.867 ± 0.05 0.862 ± 0.054 0.881 ± 0.045
KNN F-score 0.859 ± 0.05 0.853 ± 0.049 0.861 ± 0.047 0.851 ± 0.053 0.866 ± 0.048
KNN G-mean 0.919 ± 0.03 0.920 ± 0.029 0.926 ± 0.027 0.918 ± 0.03 0.927 ± 0.027

RF Accuracy 0.898 ± 0.032 0.901 ± 0.031 0.900 ± 0.031 0.898 ± 0.032 0.905 ± 0.031
RF F-score 0.879 ± 0.041 0.885 ± 0.037 0.887 ± 0.036 0.883 ± 0.037 0.891 ± 0.036
RF G-mean 0.930 ± 0.024 0.935 ± 0.022 0.937 ± 0.021 0.935 ± 0.021 0.939 ± 0.02

The mean cross-validation scores for each dataset are presented in Table A1 (see
Appendix A). This table allows the direct comparison of the performance metrics be-
ing analyzed.

4.2. Statistical Analysis

The experiment’s multi-dataset context was used to perform a Friedman test [58].
Table 4 shows the results obtained in the Friedman test performed, where the null hy-
pothesis was rejected in all cases. The rejection of the null hypothesis implies that the
differences between the differences among the different oversamplers were not random, in
other words, these differences were statistically significant.

Table 4. Results for Friedman test. Statistical significance is tested at a level of α = 0.05. The null
hypothesis is that there is no difference in the classification outcome across oversamplers.

Classifier Metric p-Value Significance

LR Accuracy 9.80 × 10−3 TRUE
LR F-score 2.30 × 10−3 TRUE
LR G-mean 9.80 × 10−4 TRUE

KNN Accuracy 4.30 × 10−3 TRUE
KNN F-score 4.30 × 10−3 TRUE
KNN G-mean 3.00 × 10−3 TRUE

RF Accuracy 5.50 × 10−3 TRUE
RF F-score 2.90 × 10−3 TRUE
RF G-mean 1.80 × 10−4 TRUE

A Wilcoxon signed-rank test [59] was also performed to understand whether K-means
SMOTE’s superiority was statistically significant across datasets and oversamplers, as
suggested in [57]. This method was used as an alternative to the paired Student’s t-test,
since the distribution of the differences between the two samples cannot be assumed
as normally distributed. The null hypothesis of the test was that K-means SMOTE’s
performance was similar to the compared oversampler (i.e., the oversamplers used followed
a symmetric distribution around zero).

4.3. Discussion

The mean rankings presented in Figure 7 show that on average, K-means SMOTE
produced the best results for every classifier and performance metric used. This is due to
the clustering phase and subsequent selection of data to be considered for oversampling.
By successfully clustering and selecting the relevant areas in the data space to oversample,
the generation of artificial instances is done only in the context of minority regions that
represent well their spectral signature.
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As previously discussed, the direct comparison of performance metrics averaged
over various datasets is not recommended due to the varying levels of performance
of classifiers across datasets [57]. Nonetheless, these results are shown in Table 3 to
provide a fuller picture of the results obtained in the experiment. We found that on
average K-means SMOTE provides increased performance, regardless of the classifier
and performance metric used. More importantly, K-means SMOTE guaranteed a more
consistent performance across datasets and with less variability, which can be attested in
Figure 7 and Tables 3 and A1.

As discussed in Section 3.3, Evaluation Metrics, our results are consistent with the
findings in [51,52]. Particularly, we consider the results obtained in our experiment using
Overall Accuracy to be less informative than the results obtained with the remaining
performance metrics, since this metric is affected by imbalanced class distributions. The
majority class bias in this metric can be observed in our experiment in Figure 7 with the
classifiers LR and KNN, where the control method (NONE) is only outperformed by K-
means SMOTE. This effect is observed with more detail in Table 3, where the benchmark
oversamplers are outperformed by the control method in 16 out of 63 tests (approximately
25%). Out of these, most refer to tests using overall accuracy among the four datasets with
highest IR, showing the overall accuracy’s class imbalance bias discussed in [51,52]. The K-
means SMOTE oversampler is only outperformed by the control method in 3 of tests (all of
them using overall accuracy). This is an improvement over the benchmark oversamplers,
showing that generally K-means SMOTE is the best choice even when overall accuracy is
used as the main performance metric.

In the majority of the cases, K-means SMOTE was able to generate higher quality data
due to the non-random selection of data spaces to oversample. This can be seen in the
performance of the classifiers trained on top of this data generation step, making it a more
informed data generation method in the context of LULC.

The performance of both oversamplers and classifiers is generally dependent on the
dataset being used. Although both absolute and relative scores between the different
oversamplers are dependent on the choice of metric and classifier, K-means SMOTE’s
relative performance is consistent across datasets and generally outperforms the remaining
oversampling methods in 56 of the 63 tests (approximately 89%). The mean cross-validation
results found in Table A1 show that performance-wise, K-means SMOTE is always better
than or as good as SMOTE, with the exception of 4 situations (representing 6% of the
tests done), in which cases the percentage point difference is neglectable (≤0.1 percent-
age points).

The statistical tests showed that not only there is a statistically significant difference
across the oversamplers used in this problem (found in the Friedman test presented in
Table 4), but also that K-means SMOTE’s superior performance is statistically significant
at a level of 0.05 in 27 out of 28 tests in the Wilcoxon signed-rank test shown in Table 5
(approximately 96% of the tests performed). This shows that, in most cases, the usage of
k-means SMOTE improves the quality of LULC classification when compared to using
SMOTE in its original format, which remains the most popular oversampler among the
remote sensing community.

Table 5. p-values of the Wilcoxon signed-rank test. Boldface values are statistically significant at a
significance level of α = 0.05.

Dataset NONE ROS SMOTE B-SMOTE

Botswana 3.1 × 102 3.9 × 103 3.9 × 103 3.9 × 103

Pavia Centre 3.1 × 102 3.9 × 103 1.2 × 102 3.9 × 103

Kennedy Space Center 3.1 × 102 3.9 × 103 2.7 × 102 3.9 × 103

Salinas A 3.1 × 102 3.9 × 103 1.2 × 102 3.9 × 103

Pavia University 3.1 × 102 3.9 × 103 3.9 × 103 3.9 × 103

Salinas 3.1 × 102 5.50 × 102 2.7 × 102 3.9 × 103

Indian Pines 3.1 × 102 3.9 × 103 7.8 × 103 3.9 × 103
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Although the usage of K-means SMOTE successfully captured the spectral signatures
of the minority classes, it was done using K-means, a problem-agnostic clusterer. Conse-
quently, the implementation of this method using a GIS-specific clusterer that considers
the geographical traits of different regions (e.g., using the sampled pixels’ geographical
coordinates), may be a promising direction towards the development of more appropriate
oversampling techniques in the remote sensing domain.

5. Conclusions

This research paper was motivated by the challenges faced when classifying rare
classes for LULC mapping. Cluster-based oversampling is especially useful in this context
because the spectral signature of a given class often varies, depending on its geographical
distribution and the time period within which the image was acquired. This induces the
representation of minority classes as small clusters in the input space. As a result, training
a classifier capable of identifying LULC minority classes in the hyper/multi-spectral scene
over different areas or periods becomes particularly challenging. The clustering procedure,
performed before the data generation phase, allows for a more accurate generation of
minority samples, as it identifies these minority clusters.

A number of existing methods to address the imbalanced learning problem were
identified and their limitations discussed. Typically, algorithm-based approaches and
cost-sensitive solutions are not only difficult to implement, but they are also context
dependent. In this paper we focused on oversampling methods due to their widespread
usage, easy implementation and flexibility. Specifically, this paper demonstrated the
efficacy of a recent oversampler, K-means SMOTE, applied in a multi-class context for Land
Cover Classification tasks. This was done with sampled data from seven well known and
naturally imbalanced benchmark datasets: Indian Pines, Pavia Center, Pavia University,
Salinas, Salinas A, Botswana and Kennedy Space Center. For each combination of dataset,
oversampler and classifier, the results of every classification task was averaged across a
five fold stratification strategy with three different initialization seeds, resulting in a mean
validation score of 15 classification tasks. The mean validation score of each combination
was then used to perform the analyses presented in this report.

In 56 out of 63 classification tasks (approximately 89%), K-means SMOTE led to better
results than ROS, SMOTE, B-SMOTE and no oversampling. More importantly, we found
that K-means SMOTE is always better or equal than the second best oversampling method.
K-means SMOTE’s performance was independent from both the classifier and performance
metric under analysis. In general, K-means SMOTE shows a higher performance among
the non tree-based classifiers employed (LR and KNN) when compared with the remain-
ing oversamplers, where these oversamplers generally failed to improve the quality of
classification. Although these findings are case dependent, they are consistent with the
results presented in [21]. The proposed method also had the most consistent results across
datasets, since it produced the lowest standard deviations across datasets in 7 out of 9 cases
for both analyses, either based on ranking or mean cross-validation scores.

The proposed algorithm is a generalization of the original SMOTE algorithm. In fact,
the SMOTE algorithm represents a corner case of K-means SMOTE i.e., when the number
of clusters equals to 1. Its data selection phase differs from the one used in SMOTE and
Borderline SMOTE, providing artificially augmented datasets with less noisy data than
the commonly used methods. This allows the training of classifiers with better defined
decision boundaries, especially in the most important regions of the data space (the ones
populated by a higher percentage of minority class instances).

As stated previously, the usage of this oversampler is technically simple. It can be
applied to any classification problem relying on an imbalanced dataset, alongside any
classifier. K-means SMOTE is available as an open source implementation for the Python
programming language (see Section 3.5). Consequently, it can be a useful tool for both
remote sensing researchers and practitioners.
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Appendix A

Table A1. Mean cross-validation scores for each dataset. Legend: IP—Indian Pines, KSC—Kennedy
Space Center, PC—Pavia Center, PU—Pavia University, SA—Salinas A.

Dataset Classifier Metric NONE ROS SMOTE B-SMOTE K-SMOTE

Botswana LR Accuracy 0.92 0.917 0.92 0.921 0.927
Botswana LR F-score 0.913 0.909 0.913 0.914 0.921
Botswana LR G-mean 0.952 0.95 0.952 0.952 0.956
Botswana KNN Accuracy 0.875 0.862 0.881 0.869 0.889
Botswana KNN F-score 0.859 0.85 0.873 0.859 0.879
Botswana KNN G-mean 0.924 0.918 0.93 0.923 0.933
Botswana RF Accuracy 0.873 0.884 0.877 0.877 0.890
Botswana RF F-score 0.865 0.877 0.872 0.87 0.883
Botswana RF G-mean 0.925 0.933 0.929 0.928 0.936

PC LR Accuracy 0.954 0.955 0.955 0.95 0.956
PC LR F-score 0.944 0.947 0.947 0.941 0.948
PC LR G-mean 0.968 0.972 0.972 0.966 0.973
PC KNN Accuracy 0.926 0.92 0.923 0.924 0.926
PC KNN F-score 0.915 0.909 0.913 0.913 0.915
PC KNN G-mean 0.953 0.955 0.957 0.954 0.957
PC RF Accuracy 0.938 0.941 0.94 0.938 0.942
PC RF F-score 0.928 0.932 0.931 0.928 0.933
PC RF G-mean 0.959 0.964 0.965 0.961 0.965

KSC LR Accuracy 0.904 0.905 0.905 0.899 0.909
KSC LR F-score 0.868 0.873 0.874 0.862 0.877
KSC LR G-mean 0.928 0.932 0.932 0.924 0.934
KSC KNN Accuracy 0.855 0.859 0.862 0.857 0.865
KSC KNN F-score 0.808 0.819 0.827 0.81 0.826
KSC KNN G-mean 0.893 0.901 0.906 0.895 0.905
KSC RF Accuracy 0.86 0.859 0.863 0.859 0.868
KSC RF F-score 0.817 0.815 0.826 0.816 0.832
KSC RF G-mean 0.898 0.899 0.905 0.898 0.907
SA LR Accuracy 0.979 0.981 0.983 0.979 0.984
SA LR F-score 0.976 0.979 0.982 0.977 0.982
SA LR G-mean 0.985 0.988 0.990 0.987 0.989
SA KNN Accuracy 0.987 0.979 0.982 0.983 0.988
SA KNN F-score 0.986 0.979 0.981 0.982 0.987
SA KNN G-mean 0.992 0.989 0.99 0.991 0.993
SA RF Accuracy 0.98 0.983 0.984 0.979 0.985
SA RF F-score 0.979 0.982 0.983 0.978 0.984
SA RF G-mean 0.987 0.988 0.989 0.986 0.990
PU LR Accuracy 0.905 0.897 0.897 0.891 0.904

https://github.com/joaopfonseca/research
https://github.com/joaopfonseca/research
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Table A1. Cont.

Dataset Classifier Metric NONE ROS SMOTE B-SMOTE K-SMOTE

PU LR F-score 0.89 0.894 0.894 0.888 0.898
PU LR G-mean 0.932 0.947 0.947 0.942 0.949
PU KNN Accuracy 0.895 0.867 0.865 0.873 0.895
PU KNN F-score 0.891 0.868 0.868 0.874 0.891
PU KNN G-mean 0.94 0.935 0.936 0.936 0.941
PU RF Accuracy 0.912 0.908 0.907 0.908 0.911
PU RF F-score 0.909 0.906 0.906 0.908 0.909
PU RF G-mean 0.946 0.946 0.948 0.948 0.949

Salinas LR Accuracy 0.990 0.990 0.989 0.990 0.990
Salinas LR F-score 0.985 0.986 0.985 0.985 0.986
Salinas LR G-mean 0.992 0.993 0.992 0.992 0.993
Salinas KNN Accuracy 0.970 0.967 0.969 0.967 0.970
Salinas KNN F-score 0.959 0.957 0.960 0.957 0.960
Salinas KNN G-mean 0.977 0.978 0.981 0.976 0.981
Salinas RF Accuracy 0.984 0.983 0.983 0.983 0.985
Salinas RF F-score 0.979 0.979 0.977 0.978 0.980
Salinas RF G-mean 0.989 0.989 0.989 0.989 0.990

IP LR Accuracy 0.687 0.681 0.68 0.678 0.692
IP LR F-score 0.662 0.663 0.659 0.659 0.674
IP LR G-mean 0.798 0.801 0.798 0.797 0.807
IP KNN Accuracy 0.644 0.602 0.589 0.557 0.632
IP KNN F-score 0.593 0.591 0.603 0.56 0.604
IP KNN G-mean 0.757 0.764 0.782 0.751 0.781
IP RF Accuracy 0.742 0.747 0.747 0.74 0.752
IP RF F-score 0.673 0.704 0.713 0.701 0.714
IP RF G-mean 0.806 0.826 0.835 0.831 0.838
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