
Research Article
Improving Active Learning Performance through the Use of
Data Augmentation

Joao Fonseca and Fernando Bacao

NOVA Information Management School, Universidade Nova de Lisboa, Lisbon, Portugal

Correspondence should be addressed to Joao Fonseca; jpfonseca@novaims.unl.pt

Received 25 August 2022; Revised 12 December 2022; Accepted 27 December 2022; Published 20 February 2023

Academic Editor: Frederick E. Petry

Copyright © 2023 Joao Fonseca and Fernando Bacao. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Active learning (AL) is a well-known technique to optimize data usage in training, through the interactive selection of unlabeled
observations, out of a large pool of unlabeled data, to be labeled by a supervisor. Its focus is to fnd the unlabeled observations that,
once labeled, will maximize the informativeness of the training dataset, therefore reducing data-related costs. Te literature
describes several methods to improve the efectiveness of this process. Nonetheless, there is a paucity of research developed around
the application of artifcial data sources in AL, especially outside image classifcation or NLP. Tis paper proposes a new AL
framework, which relies on the efective use of artifcial data. It may be used with any classifer, generation mechanism, and data
type and can be integrated with multiple other state-of-the-art AL contributions. Tis combination is expected to increase the ML
classifer’s performance and reduce both the supervisor’s involvement and the amount of required labeled data at the expense of
a marginal increase in computational time. Te proposed method introduces a hyperparameter optimization component to
improve the generation of artifcial instances during the AL process as well as an uncertainty-based data generation mechanism.
We compare the proposed method to the standard framework and an oversampling-based active learning method for more
informed data generation in an AL context. Te models’ performance was tested using four diferent classifers, two AL-specifc
performance metrics, and three classifcation performance metrics over 15 diferent datasets. We demonstrated that the proposed
framework, using data augmentation, signifcantly improved the performance of AL, both in terms of classifcation performance
and data selection efciency (all the codes and preprocessed data developed for this study are available at https://github.com/
joaopfonseca/publications/).

1. Introduction

Te importance of training robust ML models with minimal
data requirements is substantially increasing [1–3]. Al-
though the growing amount of valuable data sources and
formats being developed and explored is afecting various
domains [4], these data are often unlabeled. Only a tiny
amount of the data being produced and stored can be helpful
in supervised learning tasks. In addition, it is often difcult
and expensive to label data for specifc machine learning
(ML) projects, especially when data-intensive ML tech-
niques are involved (e.g., deep learning classifers) [1]. In this
scenario, labeling the full dataset becomes impractical, time-
consuming, and expensive. Two diferent ML techniques
attempt to address this problem: semisupervised learning

(SSL) and active learning (AL). Even though they address the
same problem, the two follow diferent approaches. SSL
focuses on observations with the most certain predictions,
whereas AL focuses on observations with the least certain
predictions [5].

SSL attempts to use a small, predefned set of labeled and
unlabeled data to produce a classifer with superior per-
formance. Tis method uses the unlabeled observations to
help defne the classifer’s decision boundaries [6]. Simul-
taneously, the amount of labeled data required to reach
a given performance threshold is also reduced. It is a par-
ticular case of ML because it falls between the supervised and
unsupervised learning perspectives. AL, instead of opti-
mizing the informativeness of an existing training set, ex-
pands the dataset to include the most informative and/or

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 7941878, 17 pages
https://doi.org/10.1155/2023/7941878

https://orcid.org/0000-0001-5889-3575
https://orcid.org/0000-0002-0834-0275
mailto:jpfonseca@novaims.unl.pt
https://github.com/joaopfonseca/publications/
https://github.com/joaopfonseca/publications/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7941878

representative observations [7]. It is an iterative process
where a supervised model is trained and simultaneously
identifes the most informative unlabeled observations to
increase the performance of that classifer. Te combination
of SSL with AL has been explored in the past, achieving state-
of-the-art results [8].

Several studies have pointed out the limitations of AL
within an imbalanced learning context [9, 10]. With im-
balanced data, AL approaches frequently have low perfor-
mance, high computational time, or data annotation costs.
Studies addressing this issue tend to adopt classifer-level
modifcations, such as the weighted extreme learning ma-
chine [9, 11, 12]. However, classifer or query function-level
modifcations (see Section 2.1) have limited applicability
since a universally good AL strategy has not yet been found
[7]. Other methods address imbalanced learning by
weighing the observations as the function of the observa-
tion’s class imbalance ratio [13]. Alternatively, other tech-
niques reduce the imbalanced learning bias by combining
informative and representative-based query approaches (see
Section 2.1) [14]. Another approach to deal with imbalanced
data and data scarcity, in general, is generating synthetic data
[15]. Tis approach has the advantage of being classifer-
agnostic; it potentially reduces the imbalanced learning bias
and also works as a regularization method in data-scarce
environments, such as AL implementations [16]. However,
most recent studies improve the AL performance by
modifying the design/choice of the classifer and query
functions used.

Recently, synthetic data generation techniques gathered
attention among ML researchers for its efectiveness over
a wide range of applications: regularization, oversampling,
semisupervised learning, self-supervised learning, etc. Data
augmentation generates synthetic observations to comple-
ment naturally occurring observations. It aims to reinforce
the defnition of a ML classifer’s decision boundary during
the learning phase and improve the generalization of the
algorithm. Tese techniques have the advantage of being
a data level technique (despite the existence of augmentation
methods applied internally in the ML classifer). Terefore,
they can be implemented in a way that will not afect the
choice of classifer and does not exclude the usage of other
regularization approaches. In an AL context, the generation
of synthetic data becomes particularly appealing, especially
with randomized and statistical-based approaches; it ensures
better model performance with reduced involvement of
a human agent, at the expense of a marginal increase in
computational power. In addition, synthetic data is expected
to reduce the amount of labeled data required for a good AL
implementation.

Figure 1 illustrates the diference across AL iterations
between the standard AL approach and the proposed
method. Synthetic data allowed for a quicker expansion of
the labeled input area at an early stage of the process, with
better defned decision boundaries and near-convergence of
the ML classifer’s performance at the third iteration. Data
augmentation infuences the choice of unlabeled observa-
tions for labeling into regions where synthetic data is not
being able to represent the unlabeled data pool.

1.1. Motivation and Contributions. Te usage of data aug-
mentation in AL is not new.Te literature found on the topic
(see Section 2.3) focuses on either image classifcation or
natural language processing and uses deep learning-based
data augmentation to improve the performance of neural
network architectures in AL. Tese methods, although
showing promising results, represent a limited perspective of
the potential of data augmentation in a real-world setting:

(1) Using deep learning in an iterative setting requires
access to signifcant computational power.

(2) Tese models tend to use sophisticated data aug-
mentation methods, whose implementation may not
be accessible to nonsophisticated users.

(3) Tey require a signifcant amount of processing time
per iteration and are inappropriate for settings with
limited time budgets.

(4) Te studies found on the topic are specifc to the
domain, classifer, and data augmentation method.
In addition, all of the related methods found (except
one) focus on either image or natural language
processing classifcation problems.

Consequently, the direct efect of data augmentation is
unclear: these studies implement diferent neural network-
based techniques for diferent classifcation problems, whose
performance may be attributed to various elements within
the AL framework.

In this study, we explore the efect of data augmentation
in AL in a context-agnostic setting, along with two diferent
data augmentation policies: oversampling (where the
amount of data generated for each class equals the amount of
data belonging to the majority class) and nonconstant data
augmentation policies (where the amount of data generated
exceed the amount of data belonging to the majority class in
varying quantities) between iterations. We start by con-
ceptualizing the AL framework and each of its elements, as
well as the modifcations involved to implement data aug-
mentation in the AL iterative process. We argue that simple
nondomain-specifc data augmentation heuristics are suf-
fcient to improve the performance of AL implementations,
without the need to resort to deep learning-based data
augmentation algorithms. Tese contributions can be
summarized as follows:

(1) We propose a fexible AL framework with pipelined
data augmentation for tabular data that may be
adapted for any domain or data type. Tis imple-
mentation is directed towards the use cases with
limited computational power and/or
processing time.

(2) We use a geometric-based data augmentation
method for non-network-based classifers and
adapt it to leverage information from the AL
process. To the best of our knowledge, most existing
methods use domain/classifer-specifc augmenta-
tions or the mixup approach, which is incompatible
with most classifers that are not neural network-
based.

(3) We provide empirical evidence that the integration
of varying data augmentation policies between it-
erations in the AL framework not only further re-
duces the amount of labeled data required, but is also
a viable training strategy for fully supervised learning
settings.

When compared to the standard AL framework, the
proposed framework contains two additional components:
the generator and the hyperparameter optimizer. We
implemented a modifed version of the Geometric Synthetic
Minority Oversampling Technique (G-SMOTE) [17] as
a data augmentation method with an optimized generation
policy (explained in Section 2.2). We also proposed
a hyperparameter optimization module, which is used to
fnd the best data augmentation policy at each iteration. We
tested the efectiveness of the proposed method in 15
datasets of diferent domains. We implement three AL
frameworks (standard, oversampling, and varying data
augmentation) using four diferent classifers and three
diferent performance metrics and calculated two AL-
specifc performance metrics.

Te remainder of this article is structured as follows:
Section 2 introduces relevant topics discussed in the paper
and describes the related work. Section 3 elucidates the
proposed method. Section 4 details the methodology of the
study’s experiment. Section 5 presents the results obtained
from the experiment, as well as a discussion of these results.
Section 6 presents the conclusion and future directions
drawn from this study.

2. Background

In this section, we describe the AL problem and data
augmentation techniques and review the literature that
combines AL with data augmentation. Table 1 describes the
notations used throughout the rest of this study.

2.1. Active Learning. Tis paper focuses on pool-based AL
methods as defned in [18]. Te goal of AL models is to
maximize the performance of a classifer, fc, while an-
notating as least observations, xi, as possible. Tey use
a data pool, D, where D � Dlab ∪Dpool and
|Dpool|≫ |Dlab|. Dpool and Dlab refer to the sets of un-
labeled and labeled data, respectively. Having a budget of
T iterations (where t ∈ 1, 2, . . . , T{ }) and n annotations per
iteration, at iteration t, fc is trained using Dt

lab to pro-
duce, for each xi ∈ D

t
pool, an uncertainty score using an

acquisition function facq(xi; fc). Tese uncertainty
scores are used to annotate the n observations with
highest uncertainty from Dt

pool to form Dt
new. Te iter-

ation ends with the update of Dt+1
lab � Dt

lab ∪D
t
new and

Dt+1
pool � Dt

pool/D
t
new [2, 19]. Tis process is shown in

Figure 2. Before the start of the iterative process, as-
suming Dt�0

lab � ∅, the data used to populate Dt�1
lab are

typically collected randomly from D � Dt�0
pool and are

labeled by a supervisor [20–22].
Research focused on AL has typically been focused on

the specifcation of facq [23] and domain-specifc applica-
tions, such as malware detection [24] or land use/land cover

(a) (b) (c)

Figure 1: Illustration of the diferent acquisition processes in AL using a K-nearest neighbors classifer and Shannon’s entropy as the
uncertainty estimation function, with fve observations being collected and labeled per iteration. Te top row shows the behavior of
a standard AL implementation, while the bottom row shows the behavior of the proposed method. ((a)–(c)) Te decision boundaries at
iterations 1 (after the collection of fve random initial training observations), 2 (with 10 labeled observations), and 3 (with 15 labeled
observations), respectively. Te initial labeled dataset for both approaches is the same. Te two classes were distinguished with △ and ×

and are colored as red and blue, respectively, if they are labeled. Te transparent green observations are synthetic observations (bottom
row).

International Journal of Intelligent Systems 3

classifcation [25]. Acquisition functions can be divided into
two diferent categories [26, 27]:

(1) Informative-Based. Tese strategies use the classi-
fer’s output to assess the importance of each ob-
servation towards the performance of the
classifer [28].

(2) Representative-Based. Tese strategies estimate the
optimal set of observations that will optimize the
classifer’s performance [27].

Although there are signifcant contributions toward the
development of more robust query functions and classifers
in AL, modifcations to AL’s basic structure are rarely ex-
plored. In [21], Yoo and K introduce a loss prediction
module in the AL framework to replace the uncertainty
criterion. Tis model implements a second classifer to
predict the expected loss of the unlabeled observations
(using the actual losses collected during the training of the
original classifer) and return the unlabeled observations
with the highest expected loss. However, this contribution is
specifc to deep neural networks and was only tested for
image classifcation.

AL techniques may also be used to complement other
well-known learning challenges. For example, security
bug report prediction tasks are typically developed in
imbalanced learning environment, where it is necessary to
manually label large amounts of data, which may result in
mislabeled data [29]. Another related example is ma-
chinery fault diagnostics, where the quality and quantity
of the data collected is often recognized as a bottleneck
[30]. In this case, ML-based techniques frequently le-
verage unlabeled data to improve the classifcation per-
formance [31] and rely on manual data acquisition [32]. In
these examples, the application of an AL technique could
reduce the amount of labeled data required, reduce the
strain in the supervisor’s labeling process, and reduce the
amount of label noise.

An under explored challenge in the AL literature is the
efective handling of diferent data structures. One method
to address this problem is autoencoder architectures [33] or,
in the case of text data, semantic representation networks
[34]. However, understanding how to integrate these two
types of methods is a subject of future research.Within other
research streams, such as deep reinforcement learning, some

Table 1: Description of all notations and symbols used throughout the article.

Symbol Meaning
fc ML classifer
xi Observation at index i

facq(xi; fc) Acquisition function
faug(xi; τ) Augmentation function
τ Augmentation policy
D Data pool contains both labeled and unlabeled data
Dt

lab Labeled data set at iteration t

Dt
pool Unlabeled data pool at iteration t

Dt
new Set of observations from Dt

pool to be labeled and added to Dt+1
lab

T Iteration budget
n Annotation budget per iteration

Append

Current Training
Dataset

New Training
Observations

Unlabeled
Dataset

Train

Predict

Classifier Uncertainty
Criterion

Select top N
Observations

Supervisor
(Data Labeling)

Query/Acquisition Function

Figure 2: Diagram depicting a typical AL iteration. In the frst iteration, the training set collected during the initialization process becomes
the “current training dataset.”

4 International Journal of Intelligent Systems

research also focus on optimizing observation efciency
during the learning process [35].

2.2. Data Augmentation. Te standard AL model can be
complemented with a data augmentation function,
faug(xi; τ), where τ defnes the augmentation policy. In this
context, τ refers to the transformation applied and its
hyperparameters and faug produces a modifed observation,
x∈ Daug whereDaug is the set of modifed observations. Tis
involves the usage of a new set of data, Dt

train � Dt
lab ∪D

t
aug,

to train the classifer.
Data augmentation methods expand the training dataset

by introducing new and informative observations [36]. Te
production of artifcial data may be conducted via the in-
troduction of perturbations on the input [37], feature [38],
or output space [36]. Data augmentation methods may be
divided into two categories [39]:

(1) Heuristic approaches attempt to generate new and
relevant observations by applying a predefned
procedure, usually incorporating some degree of
randomness [40]. Since these methods typically
occur in the input space, they require fewer data and
computational power when compared to neural
network methods.

(2) Neural network approaches, on the other hand, map
the original input space into a lower-dimensional
representation, known as the feature space [38]. Te
generation of artifcial data occurs in the feature
space and is reconstructed into the input space.
Although these methods allow the generation of less
noisy data in high-dimensional contexts and more
plausible artifcial data, they are signifcantly more
computationally intensive.

While some techniques may depend on the domain,
others are domain-agnostic. Random erasing [41],
translation, cropping, and fipping are the examples of
image data-specifc augmentation methods. Other
methods, such as autoencoders, may be considered do-
main agnostic.

2.3. Data Augmentation in Active Learning. Te only AL
model found that uses data augmentation outside of the
computer vision or NLP domains implements a pipelined
approach, described in [20]. In this study, the AL model
proposed was applied for tabular data using an oversampling
data augmentation policy (i.e., the artifcial data was only
generated to balance the target class frequencies). However,
this AL model was applied in a land use/land cover clas-
sifcation context with specifc characteristics that are not
necessarily found in other supervised learning problems.
Specifcally, these types of datasets are high dimensional and
have limited data variability within each class (i.e., cohesive
spectral signatures within classes) due to their geographical
proximity. Furthermore, this method does not allow aug-
mentation policy optimization (i.e., every hyperparameter
has to be hard-coded a priori).

Te Bayesian generative active deep learning
(BGDAL) [42] is another example of a pipelined com-
bination of facq and faug, applied to image classifcation.
BGDAL uses a variational autoencoder (VAE) architec-
ture to generate artifcial observations. However, the
proposed model is computationally expensive, requires
a large data pool to train the VAE, and is not only de-
pendent on the quality of the augmentations performed
but also on the performance of the discriminator and
classifers used.

Te method proposed in [16], look-ahead data acqui-
sition for deep active learning, implements data augmen-
tation to train a deep learning classifer. However, adapting
existing AL applications to use this approach is often im-
practical and implies the usage of image data since the
augmentations used are image data specifc and occur on the
unlabeled observations, before the unlabeled data selection.

Te variational adversarial active learning (VAAL)
model [43] is a deep AL approach to image classifcation that
uses inputs as the embeddings produced by a VAE into
a secondary classifer, working as facq, to predict if xi ∈ D
belongs to Dpool. Te n true positives with the highest
uncertainty are labeled by the supervisor andDpool andDlab
are updated as described in Section 2.1. Te task-aware
VAAL model [44] extends the VAAL model by in-
troducing a ranker, which consists of the learning loss
module introduced in [21]. Tese models use data aug-
mentation techniques to train the diferent neural network-
based components of the proposedmodels. However, the AL
components used are specifc image classifcation, compu-
tationally expensive, and the analysis of the efect of data
augmentation in these AL models is not discussed.

In [45], the proposed AL method was explicitly designed
for image data classifcation, where a deep learning model
was implemented as a classifer, but its architecture is not
described, the augmentation policies used are unknown and
the results reported correspond to single runs of the dis-
cussed model. Te remaining AL models found implement
data augmentation for NLP applications in [46, 47]. How-
ever, these methods were designed for specifc applications
within that domain and are not necessarily transferable to
other domains or tasks.

3. Proposed Method

Based on the literature found on AL, most of the contri-
butions and novel implementations of AL algorithms have
focused on the improvement of the choice/architecture of
the classifer or the improvement of the uncertainty crite-
rion. In addition, the resulting classifcation performance of
AL-trained classifers is frequently inconsistent and mar-
ginally improves the classifcation performance when
compared to classifers trained over the entire training set. In
addition, there is also signifcant variability in the data se-
lection efciency during diferent runs of the AL iterative
process [20].

Tis paper provides a context-agnostic AL framework
for the integration of data augmentation within AL, with the
following contributions:

International Journal of Intelligent Systems 5

(1) Improvement of the AL framework by introducing
a parameter tuning stage only using the labeled
dataset available at the current iteration (i.e., no
labeled hold-out set is needed).

(2) Generalization of the generator module proposed in
[20] from oversampling techniques to any other data
augmentation mechanism and/or policy.

(3) Implementation of data augmentation outside the
deep AL realm, which was not previously found in
the literature.

(4) Analysis of the impact of data augmentation and
oversampling in AL over 15 diferent datasets of
diferent domains, while comparing them with the
standard AL framework.

Te proposed AL framework is depicted in Figure 3. Te
generator element becomes an additional source of data and
is expected to introduce additional data variability into the
training dataset. Tis aspect should allow the classifer to
generalize better and performmore consistently over unseen
observations. However, in this scenario, the amount of data
to generate per class at each iteration is unknown. Conse-
quently, the hyperparameter tuning step was introduced to
estimate the optimal data augmentation policy at each it-
eration. In our implementation, this step uses the current
training dataset to perform an exhaustive search over
specifed generator parameters, tested over a 5-fold cross-
validation method. Te best augmentation policy found is
used to train the iteration’s classifer in the following step.
Tis procedure is described in Algorithm 1.

We implemented a simple modifcation in the selection
mechanism of the G-SMOTE algorithm to show the efec-
tiveness of data augmentation in an AL implementation. We
use the uncertainties produced by facq to compute the
probabilities of observations to be selected for augmentation
as an additional parameter. Tis modifcation is described in
Algorithm 2.

Tis modifcation facilitates the usage of G-SMOTE
beyond its original oversampling purposes. However, in
this paper, the data augmentation strategies are also used to
ensure that class frequencies are balanced. Furthermore, the
amount of artifcial data produced for each class is defned by
the augmentation factor, αaf, which represents a percentage
of the majority class Cmaj (e.g., an augmentation factor of 1.2
will ensure there are count(Cmaj) × 1.2 observations in every
class). In this paper’s experiment, the data generation
mechanism is similar to the one in [20]. Tis factor allows
the direct comparison of the two frameworks and establishes
a causality of the performance variations to the data gen-
eration mechanism (i.e., augmentation vs. normal over-
sampling) and hyperparameter tuning steps. However, in
this case, the hyperparameter tuning is solely going to be
used for augmentation policy optimization.

In the proposed framework, we (1) generalize the gen-
erator module to accept any data augmentation method or
policy and (2) introduce a hyperparameter tuning module to
estimate the optimal data augmentation policy. Tis frame-
work was designed to be task-agnostic. Specifcally, any data

augmentation method (domain-specifc or not) may be ap-
plied, as well as any other parameter search method. It is also
expected to be compatible with other AL modifcations, in-
cluding those that do not afect solely the classifer or un-
certainty criterion, such as the one proposed in [21].

4. Methodology

Tis section describes the diferent elements included in the
experimental procedure. Te datasets used were acquired in
open data repositories. Teir sources and preprocessing
steps are defned in Subsection 4.1.Te classifers used in the
experiment are defned in Subsection 4.2. Te metrics
chosen to measure AL performance and overall classifcation
performance are defned in Subsection 4.3.Te experimental
procedure is described in Subsection 4.4.

Te methodology developed serves a two-fold pur-
pose: (1) comparing classifcation performance once all
the AL procedures are completed (i.e., optimal perfor-
mance of a classifer trained via iterative data selection)
and (2) comparing the amount of data required to reach
specifc performance thresholds (i.e., the number of AL
iterations required to reach similar classifcation
performances).

4.1. Datasets. Te datasets used to test the proposed
method are publicly available in open data repositories.
Specifcally, they were retrieved from the OpenML and
the UCI machine learning repository websites. Tey were
chosen considering diverse application domains, im-
balance ratios, dimensionality, and number of target
classes, all of them focused on classifcation tasks. Te
goal is to demonstrate the performance of the diferent
AL frameworks in various scenarios and domains. Te
data preprocessing approach was similar across all
datasets. Table 2 describes the key properties of the 15
preprocessed datasets where the experimental procedure
was applied.

Te data preprocessing pipeline is depicted as
a fowchart in Figure 4. Te missing values are removed
from each dataset by removing the corresponding ob-
servations. Tis step ensures that the input data in the
experiment is kept as close to its original form as possible.
Te nonmetric features (i.e., binary, categorical, and
ordinal variables) were removed since the application of
G-SMOTE is limited to continuous and discrete features.
Te datasets containing over 2000 observations were
downsampled in order to maintain the datasets to
a manageable size. Te data sampling procedure pre-
serves the relative class frequency of the dataset, in order
to maintain the imbalance ratio (IR) originally found in
each dataset (where IR � count(Cmaj)/count(Cmin)). Te
remaining features of each dataset are scaled to the range
of [−1, 1] to ensure a common range across features.

Te preprocessed datasets were stored into an SQLite
database fle and are available along with the experiment’s
source code in the project’s GitHub repository (see fnal
remarks regarding data and software availability).

6 International Journal of Intelligent Systems

4.2. Machine Learning Algorithms. We used a total of four
classifcation algorithms and a heuristic data augmentation
mechanism. Te choice of classifers was based on the
popularity and family of the classifers (tree-based, nearest
neighbors-based, ensemble-based, and linear models). Our
proposed method was tested using a decision tree (DT) [48],
a K-nearest neighbors classifer (KNN) [49], a random forest
classifer (RF) [50], and a logistic regression (LR) [51]. Since

the target variables are multiclass, the LR classifer was
implemented using the one-versus-all approach. Te pre-
dicted class is assigned to the label with the highest
likelihood.

Te oversampler G-SMOTE was used as a data aug-
mentation method. Te typical data generation policy of
oversampling methods is to generate artifcial observations
on nonmajority classes such that the number of majority

Train

Append

Current Training
Dataset

New Training
Observations

Unlabeled
Dataset

Classifier Uncertainty
Criterion

Select top N
Observations

Supervisor
(Data Labeling)

Query/Acquisition Function

C

C

Predict

Generator
(Artificial Data)

Hyperparam.
Tuning

Figure 3: Diagram depicting the proposed AL iteration.Te proposedmodifcations are comprised within the red polygon andmarked with
a boldface “C.”

Given: t≥ 1, performance metric fpm

Input: Dpool, Dlab, fc, faug, facq, τgrid, k, n

Output: Dpool, Dlab

Function ParameterTuning (fc, faug,τgrid,Dlab, k):
p←0

τ←∅
D1

lab, . . .Dk
lab ←Dlab//D

n
lab ∩D

m
lab � ∅,∀(n, m) ∈ 1, . . . , k

forall τ′ ∈ τgrid do
p′←∅
forall Di

lab ∈ D1
lab, . . .Dk

lab do
Dtest
′ ←Di

lab

Dtrain
′ ←Dlab/D

i
lab

Dtrain
′ ←faug(Dtrain

′ ; τ′)
train fc using Dtrain

′

p′←p′ ∪ fpm(fc(Dtest))

p′←xi∈p′xi/k
if p′ >p then

p←p′

τ←τ′
return τ

begin
τ←ParameterTuning(fc, faug, τgrid,Dlab, k)

Dtrain←faug(Dlab; τ)

train fc using Dtrain

Dnew � argmaxDpool
′ ⊂ Dpool ,|Dpool

′ |�nx∈Dpool
′ facq(x; fc)

annotate Dnew

Dpool←Dpool/Dnew

Dlab←Dlab ∪Dnew

ALGORITHM 1: Proposed AL framework (single iteration).

International Journal of Intelligent Systems 7

class observations matches those of each nonmajority class.
We modifed this data generation policy to generate ob-
servations for all classes, as a percentage of the number of
observations in the majority class. In addition, the original
G-SMOTE algorithm was modifed to accept data selection

probabilities based on classifcation uncertainty. Tese
modifcations are discussed in Section 3.

Every AL procedure was tested with diferent selection
criteria: random selection, entropy, and breaking ties. Te
baseline used is the standard AL procedure. As a benchmark,
we add the AL procedure using G-SMOTE as a standard
oversampling method, as proposed in [20]. Our proposed
method was implemented using G-SMOTE as a data aug-
mentation method to generate artifcial observations for all
classes, while still balancing the class distribution, as de-
scribed in Section 3.

4.3. EvaluationMetrics. Considering the imbalanced nature
of the datasets used in the experiment, commonly used
performance metrics such as overall accuracy (OA), al-
though being intuitive to interpret, are insufcient to
quantify a model’s classifcation performance [52]. Te
Cohen’s Kappa performance metric, similar to OA, is also
biased towards high-frequency classes since its defnition is
closely related to the OA metric, making its behavior
consistent with OA [53]. However, these metrics remain
popular choices for the evaluation of classifcation perfor-
mance. Other performance metrics such as
precision � TP/TP + FP, recall � TP/TP + FN (also known
as sensitivity), or specif icity � TN/TN + FP are calculated as
a function of true/false positives (TP and FP) and true/false
negatives (TN and FN) and can be used on a per-class basis

Given: t≥ 1, Dt
lab ≠∅, Dlab � Dlab

min ∪Dmaj

lab
, GSMOTE

Input: Dt
pool, D

t
lab, ft−1

c , facq, τ
Output: Dt

train

Function DataSelection (Dt
lab, facq, ft−1

c):
U←∅
P←∅
ps ∼ U(0, 1)

forall xi ∈ D
t
lab do

uxi
←facq(xi; ft−1

c)

U←U∪ uxi

forall uxi
∈ U do

pxi
←uxi

/ U + P

P←P∪ pxi

i←argmax(P<ps)

return i-th element in Dt
lab

begin
Daug

min←∅
Dmaj

aug←∅
αaf, αtrunc, αdef←τ
N←count(Cmaj) × αaf

forall Daug
′ ∈ Daug

min,Dmaj
aug ,Dlab
′ ∈ Dlab

min,D
maj

lab do
while |Daug

′ |<N do
xcenter←DataSelection(Dlab

′ , facq, ft−1
c)

xgen←GSMOTE(xcenter,Dt
lab, αtrunc, αdef)

Daug
′ ←Daug

′ ∪ xgen

Daug←Daug
min ∪Dmaj

aug

Dt
train←D

t
lab ∪Daug

ALGORITHM 2: G-SMOTE modifed for data augmentation in AL.

Table 2: Description of the datasets collected after data pre-
processing. Te sampling strategy is similar across datasets. IR,
imbalance ratio.

Dataset Feat Inst Min.
inst

Maj.
inst IR Class

Image
segmentation 14 1155 165 165 1.0 7

Mfeat zernike 47 1994 198 200 1.01 10
Texture 40 1824 165 166 1.01 11
Waveform 40 1666 551 564 1.02 3
Pendigits 16 1832 176 191 1.09 10
Vehicle 18 846 199 218 1.1 4
Mice protein 69 1073 105 150 1.43 8
Gas drift 128 1987 234 430 1.84 6
Japanese vowels 12 1992 156 323 2.07 9
Usps 256 1859 142 310 2.18 10
Gesture
segmentation 32 1974 200 590 2.95 5

Volkert 147 1943 45 427 9.49 10
Steel plates 24 1941 55 673 12.24 7
Baseball 15 1320 57 1196 20.98 3
Wine quality 11 1599 10 681 68.1 6

8 International Journal of Intelligent Systems

instead. In a multiple dataset scenario with varying amounts
of target classes and meanings, comparing the performance
of diferent models using these metrics becomes impractical.

Based on the recommendations found in [52, 54], we
used two metrics found to be less sensitive to the class
imbalance bias, along with OA as a reference for easier
interpretability:

(i) Te geometric-mean scorer (G-mean) consists of
the geometric mean of specifcity and recall [54].
Both metrics are calculated in a multi-class context
considering a one-versus-all approach. For multi-
class problems, the G-mean scorer is calculated as
its average per class values as follows:

G − mean �

���������������

recall × specif icity

. (1)

(ii) Te F-score metric consists of the harmonic mean of
precision and recall. Te two metrics are also cal-
culated considering a one-versus-all approach. Te
F-score for the multiclass case can be calculated
using its average per class values as follows [52]:

F − score � 2 ×
precision × recall
precision + recall

. (2)

(iii) Te OA consists of the number of TP divided by the
total amount of observations. Considering c as the
label for the diferent classes present in a target class,
OA is given by the following formula:

OA �
cTPc

c TPc + FPc(
. (3)

Te comparison of the performance of AL frame-
works is based on its data selection and augmen-
tation efcacy. Specifcally, an efcient data
selection/generation policy allows the production of
classifers with high performance on unseen data
while using as least nonartifcial training data as
possible. We follow the recommendations found in
[55]. To measure the performance of the diferent
AL setups, the performance of an AL setup will be
compared using two AL-specifc performance
metrics.

(iv) Area under the Learning Curve (AULC). It is the
sum of the classifcation performance over a vali-
dation/test set of the classifers trained of all AL

iterations. Te resulting AULC scores are fxed
within the range [0, 1] by dividing the AULC scores
by the total amount of iterations (i.e., the maximum
performance area) to facilitate the interpretability of
this metric.

(v) Data Utilization Rate (DUR) [56]. It measures the
percentage of training data required to reach a given
performance threshold, as a ratio of the percentage
of training data required by the baseline framework.
Tis metric is also presented as a percentage of the
total amount of training data, without making it
relative to the baseline framework. Te DUR metric
is measured at 45 diferent performance thresholds,
ranging between [0.10, 1.00] at a 0.02 step.

4.4. Experimental Procedure. Te evaluation of diferent
active learners in a live setting is generally expensive, time-
consuming, and prone to human error. Instead, a common
practice is to compare them in an ofine environment using
labeled datasets [57]. Since the dataset is already labeled, the
annotation process is performed at zero cost in this scenario.
Figure 5 depicts the experiment designed for one dataset
over a single run.

A single run starts with the splitting of a preprocessed
dataset into fve diferent partitions, stratifed according to
the class frequencies of the target variable using the K-fold
cross-validation method. During this run, an active learner
or classifer is trained fve times using a diferent partition as
the test set each time. For each training process, a validation
set containing 25% of the subset is created and is used to
measure the data selection efciency (i.e., AULC and DUR
using the classifcation performance metrics, specifc to AL).
Terefore, for a single training procedure, 20% of the
original dataset is used as the validation set, 20% is used as
the test set, and 60% is used as the training set. Te AL
simulations and the classifers’ training occur within the
training set. However, the classifers used to fnd the
maximum performance classifcation scores are trained over
the full training set. Te AL simulations are run over
a maximum of 50 iterations (including the initialization
step), adding 1.6% of the training set each time (i.e., all AL
simulations use less than 80% of the training set). Once the
training phase is completed, the test set classifcation scores
are calculated using the trained classifers. For the case of AL,
the classifer with the optimal validation set score is used to
estimate the AL’s optimal classifcation performance over
unseen data.

Download
dataset

Drop missing
values

Drop
non-metric

features
#Obs > 2000

Sample dataset

MinMax
Scaling Return dataset

False

True

Figure 4: Data preprocessing pipeline.

International Journal of Intelligent Systems 9

Teprocess shown in Figure 5 is repeated over three runs
using diferent random seeds over the 15 diferent datasets
collected. Te fnal scores of each AL confguration and
classifer correspond to the average of the three runs and 5-
fold cross-validation estimations (i.e., the mean score of 15
fts, across 15 datasets).

Te hyperparameters defned for the AL frameworks,
classifers, and generators are shown in Table 3. In the
generators table, we distinguish the G-SMOTE algorithm
working as a normal oversampling method from G-
SMOTE-AUGM, which generates additional artifcial data
on top of the usual oversampling mechanism. Since the G-
SMOTE-AUGM method is intended to be used with
varying parameter values (via within-iteration parameter
tuning), the parameters were defned as a list of various
possible values. Te remaining parameters were selected
based on knowledge gathered in previous literature and
typical default values for each of the algorithms. Tis
choice was motivated by the impossibility of parameter
tuning in a real-world setting when applying the
benchmark AL methods. Although the proposed method
addresses this limitation, we show that exclusively tuning
the parameters on the augmentation policy is already
sufcient to achieve superior, statistically signifcant
performance.

5. Results and Discussion

In amultiple dataset experiment, the analysis of results should
not rely upon the average performance scores across datasets
uniquely. Te domain of application and fuctuations of
performance scores between datasets make the analysis of
these averaged results less accurate. Instead, it is generally
recommended to use the mean ranking scores to extend the
analysis [58]. Since mean performance scores are still intuitive
to interpret; we will present and discuss both results.Te rank
values are assigned based on themean scores of three diferent
5-fold cross-validation runs (15 performance estimations per
dataset) for each combination of dataset, AL confguration,
classifer, and performance metric.

5.1. Results. Te average rankings of the ALmethods’ AULC
estimations are shown in Table 4. Te proposed method
almost always improves AL performance and ensures higher
data selection efciency.

Table 5 shows the average AULC scores, grouped by the
classifer, evaluation metric, and AL framework. Te per-
formance of the proposed method is almost always superior
when considering the F-score and G-mean. On some oc-
casions, the average AULC score is signifcantly improved
when compared with the oversampling AL method.

Dataset

5-fold Cross Validation

K1 K2 K3 K4 K5

Stratified Split

Validation Set Train Set Test Set

PredictPredict Train

Active Learner Classifier

AL Specific
Maximum Performance
Benchmark

AULC DUR G-mean F-Score OA

Figure 5: Experimental procedure fowchart. Te preprocessed datasets are split into fve folds. One of the folds is used to test the best-
found classifers using AL and the classifers trained using the entire training dataset (containing the remaining folds). Te training set is
used to run both the AL simulations as well as train the normal classifers. Te validation set is used to measure AL-specifc performance
metrics over each iteration. We use diferent subsets for overall classifcation performance and AL-specifc performance to avoid data
leakage.

10 International Journal of Intelligent Systems

Te average DUR scores were calculated for various G-
mean thresholds, varying between 0.1 and 1.0 at a 0.02 step
(45 diferent thresholds in total). Table 6 shows the results
obtained for these scores starting from a G-mean score of 0.6
and was fltered to show the thresholds ending with 0 or 6

only. In most cases, the proposed method reduces the
amount of data annotation required to reach each G-mean
score threshold.

Te DUR scores relative to the standard AL method are
shown in Figure 6. A DUR score below 1 means that the
proposed/oversampling method requires less data than the
standard AL method to reach the same performance
threshold. For example, running an AL simulation using the
KNN classifer requires 80.7% of the amount of data re-
quired by the standard AL method using the same classifer
to reach an F-Score of 0.62 (i.e., requires 19.3% less data).

Te comparison of mean optimal classifcation scores of
AL methods with classifers (using the entire training set,
without AL) is shown in Table 7. Aside from the case of
overall accuracy, the proposed AL method produces clas-
sifers that almost consistently outperform classifers using
the whole training set (i.e., the ones labeled as MP).

5.2. Statistical Analysis. When checking for statistical sig-
nifcance in amultiple dataset context, it is critical to account
for the multiple comparison problem. Consequently, our
statistical analysis focuses on the recommendations found in
[58]. Overall, we performed three statistical tests. Te
Friedman test [59] is used to understand whether there is

Table 3: Hyperparameter defnition for the active learners, classifers, and generators used in the experiment.

Active learners Hyperparameters Inputs

Standard

Initial obs 1.6%
Additional obs. per iteration 1.6%
Max. Iterations + initialization 50

Evaluation metrics G-mean, F-score, OA
Selection strategy Random, entropy, breaking ties

Within-iteration param. tuning None
Generator None
Classifer DT, LR, KNN, RF

Oversampling Generator G-SMOTE

Proposed Generator G-SMOTE-AUGM
Within-iteration param. tuning Grid search K-fold CV

Classifer

DT Min. samples split 2
Criterion Gini

LR

Maximum iterations 100
Multiclass One-vs-all
Solver Liblinear
Penalty L2 (ridge)

KNN
Neighbors 5
Weights Uniform
Metric Euclidean

RF
Min. samples split 2

Estimators 100
Criterion Gini

Generator

G-SMOTE
Neighbors 4

Deformation factor 0.5
Truncation factor 0.5

G-SMOTE-AUGM

Neighbors 3, 4, 5
Deformation factor 0.5
Truncation factor 0.5

Augmentation factor [1.1, 2.0] at 0.1 step

Table 4: Mean rankings of the AULC metric over the diferent
datasets (15), folds (5), and runs (3) used in the experiment. Te
proposed method constantly improves the results of the original
framework and, on average, almost always improves the results of
the oversampling framework.

Classifer Metric Standard Oversampling Proposed
DT Accuracy 2.13 ± 0.96 2.40 ± 0.49 1.47 ± 0.62
DT F-score 2.47 ± 0.81 2.20 ± 0.40 1.33 ± 0.70
DT G-mean 2.73 ± 0.57 1.93 ± 0.44 1.33 ± 0.70
KNN Accuracy 2.07 ± 0.93 2.07 ± 0.68 1.87 ± 0.81
KNN F-score 2.47 ± 0.81 1.87 ± 0.50 1.67 ± 0.87
KNN G-mean 2.87 ± 0.34 1.47 ± 0.50 1.67 ± 0.70
LR Accuracy 2.13 ± 0.88 2.20 ± 0.65 1.67 ± 0.79
LR F-score 2.80 ± 0.40 1.87 ± 0.50 1.33 ± 0.70
LR G-mean 2.80 ± 0.40 1.80 ± 0.54 1.40 ± 0.71
RF Accuracy 2.27 ± 0.85 1.87 ± 0.50 1.87 ± 0.96
RF F-score 2.73 ± 0.57 1.80 ± 0.54 1.47 ± 0.72
RF G-mean 2.87 ± 0.34 1.53 ± 0.50 1.60 ± 0.71

International Journal of Intelligent Systems 11

a statistically signifcant diference in performance between
the three AL frameworks. As post hoc analysis, the Wilcoxon
signed-rank test [60] was utilized to check for statistical
signifcance between the performance of the proposed AL
method and the oversampling AL method across datasets.
As a second post hoc analysis, the Holm [61] method was
employed to check for statistical signifcance between the

methods using data generators and the standard AL
framework across classifers and evaluation metrics.

Table 8 displays the p values obtained with the Friedman
test. Te diference in performance across AL frameworks is
statistically signifcant at a level of α � 0.05 regardless of the
classifer or evaluation metric being considered.

Table 9 contains the p values obtained with the Wilcoxon
signed-rank test. Te proposed method was able to out-
perform both the standard AL framework, as well as the AL
framework using a typical oversampling policy with statistical
signifcance in 14 and 12 out of 15 datasets, respectively.

Te p values shown in Table 10 refer to the results of the
Holm-Bonferroni test. Te proposed method’s superior
performance was statistically signifcant in 9 out of 12 cases.

5.3. Discussion. In this paper, we study the application of
data augmentation methods through the modifcation of the
standard AL framework. Tis is performed to further reduce
the amount of labeled data required to produce a reliable
classifer, at the expense of artifcial data generation. Overall,
the proposed method achieves better and more consistent
performance when compared to the remaining benchmark
approaches. It was implemented to focus on the optimization
of the data augmentation policy, as well as the introduction of
a more informed AL-based data augmentation approach.Te
proposed method could be further extended and achieve an
even higher performance by optimizing parameters of theML
classifcation using the hyperparameter optimizer. In addi-
tion, this framework could be further generalized by
searching, within AL iterations, for the optimal ML classifer
as well; at diferent stages of the data collection procedure,
some ML classifers might be more useful than others. Al-
though the proposed framework signifcantly improves the
fexibility of AL implementations, we found that even a su-
perfcial parameter search is sufcient to ensure a superior
performance when compared to related approaches.

In Table 4, we found that the proposed method was able
to outperform the standard AL framework in all scenarios.
Except for the overall accuracy metric, the mean rankings
are consistent with the mean AULC scores found in Table 5,
while showing performance improvements between the
proposed method and both the standard and oversampling

Table 5: Average AULC of each AL confguration tested. Each AULC score is calculated using the performance scores of each iteration in
the validation set. By the end of the iterative process, each AL confguration used a maximum of 80% instances of the 60% instances that
compose the training sets (i.e., 48% of the entire preprocessed dataset).

Classifer Metric Standard Oversampling Proposed
DT Accuracy 0.663 ± 0.149 0.658 ± 0.153 0.664 ± 0.155
DT F-score 0.610 ± 0.176 0.612 ± 0.179 0.618 ± 0.181
DT G-mean 0.744 ± 0.129 0.751 ± 0.127 0.755 ± 0.129
KNN Accuracy 0.741 ± 0.160 0.730 ± 0.178 0.734 ± 0.179
KNN F-score 0.678 ± 0.208 0.684 ± 0.211 0.687 ± 0.213
KNN G-mean 0.786 ± 0.152 0.804 ± 0.139 0.804 ± 0.141
LR Accuracy 0.736 ± 0.152 0.723 ± 0.185 0.731 ± 0.184
LR F-score 0.644 ± 0.228 0.673 ± 0.220 0.682 ± 0.221
LR G-mean 0.767 ± 0.162 0.811 ± 0.134 0.814 ± 0.136
RF Accuracy 0.789 ± 0.148 0.786 ± 0.153 0.785 ± 0.156
RF F-score 0.724 ± 0.214 0.735 ± 0.204 0.735 ± 0.205
RF G-mean 0.818 ± 0.150 0.834 ± 0.135 0.833 ± 0.135

Table 6: AL algorithms’ mean data utilization as a percentage of the
training set.

G-mean Classifer Standard
(%)

Oversampling
(%)

Proposed
(%)

0.60 DT 19.8 18.9 19.3
0.60 KNN 18.4 11.8 12.8
0.60 LR 23.0 9.7 9.7
0.60 RF 14.1 7.7 7.8
0.66 DT 23.1 23.3 22.9
0.66 KNN 23.9 21.7 21.9
0.66 LR 25.6 20.5 20.5
0.66 RF 22.0 17.6 17.5
0.70 DT 25.5 25.0 24.8
0.70 KNN 26.8 24.1 23.9
0.70 LR 29.9 23.6 23.4
0.70 RF 23.8 22.1 22.3
0.76 DT 33.4 30.5 30.1
0.76 KNN 34.0 27.7 27.3
0.76 LR 38.0 27.6 26.2
0.76 RF 28.2 24.5 24.7
0.80 DT 48.2 43.8 41.2
0.80 KNN 38.8 34.4 34.6
0.80 LR 43.7 32.6 31.3
0.80 RF 32.4 27.2 27.7
0.86 DT 69.6 66.5 64.8
0.86 KNN 53.9 52.0 52.5
0.86 LR 48.7 45.3 45.0
0.86 RF 43.9 40.0 40.0
0.90 DT 81.2 79.4 76.6
0.90 KNN 60.9 61.1 60.4
0.90 LR 62.1 62.9 59.9
0.90 RF 57.1 55.7 56.2
0.96 DT 100.0 99.7 100.0
0.96 KNN 82.4 79.7 77.1
0.96 LR 86.5 84.0 81.8
0.96 RF 70.8 71.1 70.3

12 International Journal of Intelligent Systems

methods. Te Friedman test in Table 8 showed that the
diference in the performance of these AL frameworks are
statistically signifcant, regardless of the classifer or per-
formance metric being used.

Te proposed method evidenced more consistent data
utilization requirements in most of the assessed G-mean
score thresholds when compared to the remaining AL
methods, as seen in Table 6. For example, to reach a G-mean
score of 0.9 using the KNN and LR classifers, the average
amount of data required with the oversampling AL ap-
proach increased when compared to the standard ap-
proach. However, the proposed method was able to
decrease the amount of data required in both situations.

Te robustness of the proposed method is clearer in Fig-
ure 6. In most cases, this method was able to outperform
the oversampling method. At the same time, the proposed
method also addresses inconsistencies in situations where
the oversampling method was unable to outperform the
standard method.

Te statistical analyses found in Tables 9 and 10 revealed
that the proposed method’s superiority was statistically
signifcant in all datasets except three (Baseball, Usps, and
Volkert) and established statistical signifcance when com-
pared to the standard AL method for all combinations of
classifer and performance metric, except for three cases
regarding the use of the overall accuracy metric. Tese

0.80

0.90

1.00

D
T

F-score G-mean

0.70

0.80

0.90

1.00

KN
N

Standard
Oversampling
Proposed

0.60

0.80

1.00

LR

20 40 60 80 100

0.80

0.90

1.00

RF

20 40 60 80 100
Performance Thresholds

Figure 6: Mean data utilization rates. Te y-axis shows the percentage of data (relative to the baseline AL framework) required to reach the
diferent performance thresholds.

International Journal of Intelligent Systems 13

results show that the proposed method increased the re-
liability of the new AL framework and improved the quality
of the fnal classifer while using fewer data.

Even though it was not the core purpose of this study, we
found that the proposed AL method consistently out-
performed the maximum performance threshold. Specif-
cally, in Table 7, the performance of the classifers
originating from the proposed method was able to out-
perform classifers trained using the full training dataset in 9
out of 12 scenarios. Tis outcome suggests that the selection
of a meaningful training subset training dataset paired with
data augmentation not only matches the classifcation
performance of ML algorithms but also improves them.
Even in a setting with fully labeled training data, the pro-
posed method may be used as a preprocessing technique to
further optimize classifcation performance.

Tis study discussed the efect of data augmentation
within the AL framework, along with the exploration of
optimal augmentation methods within AL iterations.
However, the conceptual nature of this study implies some
limitations. Specifcally, the large number of experiments
required to test the method’s efcacy, along with the limited
computational power available, led to a limited exploration
of the grid search’s potential. Future work should focus on
understanding how the usage of a more comprehensive
parameter tuning approach improves the quality of the AL
method. In addition, the proposed method was not able to

Table 7: Optimal classifcation scores. Te maximum performance (MP) classifcation scores are calculated using classifers trained using
the entire training set.

Classifer Metric MP Standard Oversampling Proposed
DT Accuracy 0.732 ± 0.155 0.726 ± 0.157 0.721 ± 0.167 0.727 ± 0.168
DT F-score 0.682 ± 0.194 0.679 ± 0.193 0.679 ± 0.197 0.684 ± 0.200
DT G-mean 0.792 ± 0.138 0.791 ± 0.136 0.797 ± 0.134 0.800 ± 0.137
KNN Accuracy 0.801 ± 0.164 0.799 ± 0.168 0.784 ± 0.183 0.789 ± 0.183
KNN F-score 0.742 ± 0.224 0.744 ± 0.223 0.741 ± 0.223 0.746 ± 0.224
KNN G-mean 0.827 ± 0.160 0.829 ± 0.158 0.839 ± 0.146 0.840 ± 0.147
LR Accuracy 0.778 ± 0.157 0.791 ± 0.158 0.764 ± 0.184 0.773 ± 0.185
LR F-score 0.693 ± 0.243 0.717 ± 0.241 0.718 ± 0.222 0.727 ± 0.226
LR G-mean 0.796 ± 0.171 0.814 ± 0.165 0.839 ± 0.130 0.842 ± 0.137
RF Accuracy 0.827 ± 0.145 0.832 ± 0.148 0.827 ± 0.154 0.829 ± 0.153
RF F-score 0.767 ± 0.215 0.775 ± 0.216 0.781 ± 0.204 0.784 ± 0.204
RF G-mean 0.844 ± 0.148 0.849 ± 0.149 0.863 ± 0.131 0.865 ± 0.131

Table 8: Friedman test results. Statistical signifcance is tested at
a level of α � 0.05. Te null hypothesis is that there is no diference
in the classifcation outcome across oversamplers.

Classifer Evaluation metric p value Signifcance
DT Accuracy 1.1e− 15 True
DT F-score 2.4e− 31 True
DT G-mean 2.3e− 23 True
KNN Accuracy 5.9e− 20 True
KNN F-score 8.8e− 69 True
KNN G-mean 8.8e− 52 True
LR Accuracy 1.1e− 30 True
LR F-score 4.0e− 98 True
LR G-mean 2.3e− 83 True
RF Accuracy 2.8e− 26 True
RF F-score 1.8e− 88 True
RF G-mean 1.8e− 61 True

Table 9: Adjusted p values using the Wilcoxon signed-
rank method. Bold values are statistically signifcant at a level of
α � 0.05. Te null hypothesis is that the performance of the pro-
posed framework is similar to that of the oversampling or standard
framework.

Dataset Oversampling Standard
Baseball 5.0e− 01 3.4e− 01
Gas drift 3.7e − 26 4.6e − 57
Gesture segmentation 1.3e − 02 8.7e − 04
Image segmentation 9.6e − 18 2.1e − 44
Japanese vowels 2.4e − 09 1.6e − 32
Mfeat zernike 1.2e − 12 9.5e − 40
Mice protein 6.5e − 32 1.5e − 61
Pendigits 5.0e − 18 2.3e − 45
Steel plates 3.4e − 04 1.3e − 08
Texture 1.5e − 22 6.7e − 57
Usps 3.8e− 01 2.1e − 29
Vehicle 7.4e − 11 7.9e − 13
Volkert 2.5e− 01 1.3e − 02
Waveform 8.9e − 08 2.6e − 02
Wine quality 3.8e − 05 6.1e − 03

Table 10: Adjusted p values using the Holm-Bonferroni method.
Bold values are statistically signifcant at a level of α � 0.05.Te null
hypothesis is that the oversampling or proposed method does not
perform better than the control method (standard AL framework).

Classifer Evaluation metric Oversampling Proposed
DT Accuracy 7.7e− 01 1.1e − 04
DT F-score 6.3e− 02 2.0e − 06
DT G-mean 1.0e − 08 2.9e − 12
KNN Accuracy 1.0e − 02 8.5e− 01
KNN F-score 7.1e − 07 8.3e − 13
KNN G-mean 1.9e − 11 1.0e − 12
LR Accuracy 3.2e − 02 8.3e− 01
LR F-score 1.5e − 09 5.8e − 17
LR G-mean 1.9e − 13 5.6e − 16
RF Accuracy 4.3e− 01 4.3e− 01
RF F-score 1.4e − 11 1.1e − 12
RF G-mean 1.5e − 10 1.2e − 10

14 International Journal of Intelligent Systems

outperform the standard AL method at 100% of the sce-
narios. Te exploration of other, more complex data aug-
mentation techniques might further improve its
performance by producing more meaningful training ob-
servations. Specifcally, in this study, we assume that all
datasets used follow a manifold, allowing the usage of G-
SMOTE as a data augmentation approach. However, this
method cannot be used in more complex, non-Euclidean
spaces. In this scenario, the usage of G-SMOTE is not valid
and might lead to the production of noisy data. Deep
learning-based data augmentation techniques are able to
address this limitation and improve the overall quality of the
artifcial data being generated. We also encountered sig-
nifcant standard errors throughout our experimental results
(see Subsection 5.1), consistent with the fndings in [20, 55].
Tis facet suggests that the usage of more robust generators
did not decrease the standard error of AL performance.
Instead, AL’s performance variability is likely dependent on
the quality of its initialization.

6. Conclusion and Future Directions

Te ability to train ML classifers is usually limited to the
availability of labeled data. However, manually labeling data
is often expensive, which makes the usage of AL particularly
appealing for selecting the most informative observations
and reducing the amount of required labeled data. On the
other hand, the introduction of data variability in the
training dataset can also be conducted via data augmenta-
tion. However, most, if not all, AL confgurations that use
some form of data augmentation are domain and/or task-
specifc. Tese methods typically apply deep learning ap-
proaches to both classifcation and data augmentation.
Consequently, they may not apply to other classifcation
tasks or when the available computational power is
insufcient.

In this paper, we proposed a domain-agnostic AL
framework that implements data augmentation and
hyperparameter tuning. We found that a heuristic data
augmentation algorithm is sufcient to improve the data
selection efciency in AL. Specifcally, the data augmenta-
tion method used almost always increased AL performance,
regardless of the target goal (i.e., optimizing classifcation or
data selection efciency). Te usage of data augmentation
reduced the number of iterations required to train a classifer
with a performance as good as (or better than) classifers
trained with the entire training dataset (i.e., without using
AL). In addition, the proposed method reduced the size of
the training dataset, which is expanded with artifcial data.

With this revised AL confguration, data selection in AL
iterations aims towards observations that optimize the
quality of the artifcial data produced.Te substitution of less
informative labeled data with artifcial data is especially
useful in this context since it reduces some of the user in-
teraction necessary to reach a sufciently informative
dataset. In order to further improve the proposed method,
future work should (1) focus on the development of methods
with varying data augmentation policies depending on the
diferent input space regions, (2) develop augmentation-

sensitive query functions capable of avoiding the un-
necessary selection of similar observations from the un-
labeled dataset, (3) understand the gap between randomized
data augmentation techniques and neural network/feature
space data augmentation techniques in an AL context better,
(4) explore more efcient ways to leverage the information
collected in AL queries for better augmentation strategies,
and (5) expand the current framework to integrate alter-
native learning strategies using unlabeled data, such as self
and semisupervised learning techniques.

Finally, the proposed method may be applied to any
classifcation problem where labeled data is not readily
available and an easily accessible unlabeled data pool. For
more complex data structures, the application of this
framework will require the learning of a manifold space as an
additional preprocessing step. After that, this AL framework
may be used as it is.

Data Availability

Te experiment was implemented using the Python pro-
gramming language, along with the Python libraries Scikit-
Learn [62], Imbalanced-Learn [63], Geometric-SMOTE
[17], Research-Learn, and ML-Research. All functions, al-
gorithms, experiments, and results are provided in the
project’s GitHub repository (https://github.com/
joaopfonseca/publications/). Te original datasets used in
this study are publicly available in open data repositories.
Tey were retrieved from OpenML and the UCI Machine
Learning Repository.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was supported by three research grants of the
Portuguese Foundation for Science and Technology
(“Fundação para a Ciência e a Tecnologia”), SFRH/BD/
151473/2021, DSAIPA/DS/0116/2019, and PCIF/SSI/0102/
2017.

References

[1] V. Nath, D. Yang, B. A. Landman, D. Xu, and H. R. Roth,
“Diminishing uncertainty within the training pool: active
learning for medical image segmentation,” IEEE Transactions
on Medical Imaging, vol. 40, no. 10, pp. 2534–2547, 2021.

[2] Y. Sverchkov, M. Craven, and H. Huang, “A review of active
learning approaches to experimental design for uncovering
biological networks,” PLoS Computational Biology, vol. 13,
no. 6, Article ID 1005466, 2017.

[3] Li Xiao, Da Kuang, and C. X. Ling, “Active learning for hi-
erarchical text classifcation,” in Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artifcial In-
telligence and Lecture Notes in Bioinformatics) 7301 LNAI,
pp. 14–25, Springer, Berlin, Heidelberg, 2012.

[4] Y. Li, J. Yin, and L. Chen, “SEAL: semisupervised adversarial
active learning on attributed graphs,” IEEE Transactions on

International Journal of Intelligent Systems 15

https://github.com/joaopfonseca/publications/
https://github.com/joaopfonseca/publications/

Neural Networks and Learning Systems, vol. 32, no. 7,
pp. 3136–3147, 2021.

[5] O. Simffdffdoni, M. Budnik, Y. Avrithis, and G. Gravier,
“Rethinking deep active learning: using unlabeled data at
model training,” pp. 1220–1227, 2020, https://arxiv.org/abs/
1911.08177.

[6] J. E. van Engelen and H. H. Hoos, “A survey on semi-
supervised learning,” Machine Learning, vol. 109, no. 2,
pp. 373–440, 2020.

[7] O. Sener and S. Savarese, “Active learning for convolutional
neural networks: a core-set approach,” 2018, https://arxiv.org/
abs/1708.00489.

[8] Y. Leng, X. Xu, and G. Qi, “Combining active learning and
semi-supervised learning to construct SVM classifer,”
Knowledge-Based Systems, vol. 44, pp. 121–131, 2013.

[9] H. Yu, X. Yang, S. Zheng, and C. Sun, “Active learning from
imbalanced data: a solution of online weighted extreme
learning machine,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 4, pp. 1088–1103, 2019.

[10] H. Zhang, W. Liu, and Q. Liu, “Reinforcement online active
learning ensemble for drifting imbalanced data streams,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 8, pp. 3971–3983, 2020.

[11] W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme
learning machine for imbalance learning,” Neurocomputing,
vol. 101, pp. 229–242, 2013.

[12] J. Qin, C.Wang, Q. Zou, Y. Sun, and B. Chen, “Active learning
with extreme learning machine for online imbalanced mul-
ticlass classifcation,” Knowledge-Based Systems, vol. 231,
Article ID 107385, 2021.

[13] W. Liu, H. Zhang, Z. Ding, Q. Liu, and C. Zhu, “A com-
prehensive active learning method for multiclass imbalanced
data streams with concept drift,” Knowledge-Based Systems,
vol. 215, Article ID 106778, 2021.

[14] A. Tarwat and W. Schenck, “Balancing Exploration and
Exploitation: a novel active learner for imbalanced data,”
Knowledge-Based Systems, vol. 210, Article ID 106500, 2020.

[15] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 9, pp. 1263–1284, 2009.

[16] Y.-Y. Kim, K. Song, J. H. Jang, and I.-c. Moon, “LADA: look-
ahead data acquisition via augmentation for deep active
learning,” 2021, https://arxiv.org/abs/2011.04194.

[17] G. Douzas and F. Bacao, “Geometric SMOTE a geometrically
enhanced drop-in replacement for SMOTE,” Information
Sciences, vol. 501, pp. 118–135, 2019.

[18] J. Katz-Samuels, J. Zhang, L. Jain, and K. Jamieson, “Improved
algorithms for agnostic pool-based active classifcation,”
pp. 5334–5344, 2021, https://arxiv.org/abs/2105.06499.

[19] T. Su, S. Zhang, and T. Liu, “Multi-spectral image classif-
cation based on an object-based active learning approach,”
Remote Sensing, vol. 12, no. 3, p. 504, 2020.

[20] J. Fonseca, G. Douzas, and F. Bacao, “Increasing the efec-
tiveness of active learning: introducing artifcial data gener-
ation in active learning for land use/land cover classifcation,”
Remote Sensing, vol. 13, p. 2619, 2021.

[21] D. Yoo and K. So, “Learning loss for active learning,”
pp. 93–102, 2019, https://arxiv.org/abs/1905.03677.

[22] H. H Aghdam, A. Gonzalez-Garcia, L. Antonio, and J. Weijer,
“Active learning for deep detection neural networks,”
pp. 3671–3679, 2019, https://arxiv.org/abs/1911.09168.

[23] T. M. Hospedales, S. Gong, and T. Xiang, “Finding rare
classes: active learning with generative and discriminative

models,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 25, no. 2, pp. 374–386, 2013.

[24] Y. Li, X. Wang, Z. Shi, R. Zhang, J. Xue, and Z. Wang,
“Boosting training for PDF malware classifer via active
learning,” International Journal of Intelligent Systems, vol. 37,
no. 4, pp. 2803–2821, 2022.

[25] J. Li, X. Huang, and X. Chang, “A label-noise robust active
learning sample collection method for multi-temporal urban
land-cover classifcation and change analysis,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 163, pp. 1–17,
2020.

[26] C. Su, Z. Yan, and G. Yu, “Cost-efective multi-instance
multilabel active learning,” International Journal of In-
telligent Systems, vol. 36, no. 12, pp. 7177–7203, 2021.

[27] P. Kumar and A. Gupta, “Active learning query strategies for
classifcation, regression, and clustering: a survey,” Journal of
Computer Science and Technology, vol. 35, no. 4, pp. 913–945,
2020.

[28] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for
active learning,” Knowledge and Information Systems, vol. 35,
no. 2, pp. 249–283, 2013.

[29] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters:
a case study on data label correctness for security bug report
prediction,” IEEE Transactions on Software Engineering,
vol. 48, no. 7, pp. 2541–2556, 2021.

[30] W. Zhang, Z. Wang, and X. Li, “Blockchain-based decen-
tralized federated transfer learning methodology for collab-
orative machinery fault diagnosis,” Reliability Engineering and
System Safety, vol. 229, Article ID 108885, 2023.

[31] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Open-set domain
adaptation in machinery fault diagnostics using instance-level
weighted adversarial learning,” IEEE Transactions on In-
dustrial Informatics, vol. 17, no. 11, pp. 7445–7455, 2021.

[32] M. He and D. He, “Deep learning based approach for bearing
fault diagnosis,” IEEE Transactions on Industry Applications,
vol. 53, no. 3, pp. 3057–3065, 2017.

[33] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and L. Guibas,
“Grass: generative recursive autoencoders for shape struc-
tures,” ACM Transactions on Graphics, vol. 36, no. 9, pp. 1–14,
2017.

[34] W. Zheng, X. Liu, and L. Yin, “Sentence representation
method based on multi-layer semantic network,” Applied
Sciences, vol. 11, no. 3, p. 1316, 2021.

[35] K. Zhang, Z. Wang, G. Chen et al., “Training efective deep
reinforcement learning agents for real-time life-cycle pro-
duction optimization,” Journal of Petroleum Science and
Engineering, vol. 208, Article ID 109766, 2022.

[36] S. Behpour, K. M. Kitani, and B. D. Ziebart, “ADA:Adversarial
data augmentation for object detection,” in Proceedings of the
2019 IEEE Winter Conference on Applications of Computer
Vision, WACV, pp. 1243–1252, Waikoloa, HI, USA, March
2019.

[37] J. Fonseca, G. Douzas, and F. Bacao, “Improving imbalanced
land cover classifcation with K-Means SMOTE: detecting and
oversampling distinctive minority spectral signatures,” In-
formation, vol. 12, p. 266, 2021.

[38] T. DeVries and G. W. Taylor, “Dataset augmentation in
feature space,” 2017, https://arxiv.org/abs/1702.05538.

[39] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6,
no. 1, pp. 60–48, 2019.

[40] O. Kashef and R. Hwa, “Quantifying the evaluation of
heuristic methods for textual data augmentation,” in Pro-
ceedings of the Sixth Workshop on Noisy User-Generated Text

16 International Journal of Intelligent Systems

https://arxiv.org/abs/1911.08177
https://arxiv.org/abs/1911.08177
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/2011.04194
https://arxiv.org/abs/2105.06499
https://arxiv.org/abs/1905.03677
https://arxiv.org/abs/1911.09168
https://arxiv.org/abs/1702.05538

(W-NUT 2020), pp. 200–208, Association for Computational
Linguistics, Toronto, Canada, 2020.

[41] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random
erasing data augmentation,” Proceedings of the AAAI Con-
ference on Artifcial Intelligence, vol. 34, no. 7, pp. 13001–
13008, 2020.

[42] T. Tran, D. Tanh-Toan, I. Reid, and G. Carneiro, “Bayesian
generative active deep learning,” pp. 6295–6304, 2019, https://
arxiv.org/abs/1904.11643.

[43] S. Sinha, S. Ebrahimi, and D. Trevor, “Variational adversarial
active learning,” pp. 5972–5981, 2019, https://arxiv.org/abs/
1904.00370.

[44] K. Kim, D. Park, K. In Kim, and S. Y. Chun, “Task-aware
variational adversarial active learning,” pp. 8166–8175, 2021,
https://arxiv.org/abs/2002.04709.

[45] Y. Ma, S. Lu, E. Xu, Y. Tian, and L. Zhou, “Combining active
learning and data augmentation for image classifcation,” in
Proceedings of the 2020 3rd International Conference on Big
Data Technologies, pp. 58–62, New York, NY, USA, June 2020.

[46] H. Quteineh, S. Samothrakis, and R. Sutclife, “Textual data
augmentation for efcient active learning on tiny datasets,” in
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 7400–7410,
Toronto, Canada, November 2020.

[47] Q. Li, Z. Huang, Y. Dou, and Z. Zhang, “A framework of data
augmentation while active learning for Chinese named entity
recognition,” in International Conference on Knowledge Sci-
ence, Engineering and Management, pp. 88–100, Springer,
Berlin, Heidelberg, 2021.

[48] C. Wu, Te Decision Tree Approach to Classifcation, Purdue
University, West Lafayette, IN, USA, 1975.

[49] T. Cover and P. Hart, “Nearest neighbor pattern classifca-
tion,” IEEE Transactions on Information Teory, vol. 13, no. 1,
pp. 21–27, 1967.

[50] H. Tin Kam, “Random decision forests,” in Proceedings of the
Tird International Conference on Document Analysis and
Recognition, p. 278, IEEE Computer Society, Montreal, QC,
Canada, Augest 1995.

[51] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear
models,” Journal of the Royal Statistical Society: Series A,
vol. 135, no. 3, pp. 370–384, 1972.

[52] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced
data - recommendations for the use of performance metrics,”
in Proceedings of the 2013 Humaine Association Conference on
Afective Computing and Intelligent Interaction, ACII,
pp. 245–251, Geneva, Switzerland, September 2013.

[53] M. Fatourechi, R. K. Ward, S. G. Mason, J. Huggins,
A. Schloegl, and G. E. Birch, “Comparison of evaluation
metrics in classifcation applications with imbalanced data-
sets,” in Proceedings of the 2008 Seventh International Con-
ference on Machine Learning and Applications, pp. 777–782,
IEEE, San Diego, CA, USA, December 2008.

[54] M. Kubat and S. Matwin, “Addressing the curse of imbalanced
training sets: one-sided selection,” Icml, vol. 97, pp. 179–186,
1997.

[55] D. Kottke, C. Adrian, D. Huseljic, G. Krempl, and B. Sick,
“Challenges of reliable, realistic and comparable active
learning evaluation,” CEUR Workshop Proceedings, vol. 1924,
pp. 2–14, 2017.

[56] T. Reitmaier and B. Sick, “Let us know your decision: pool-
based active training of a generative classifer with the se-
lection strategy 4DS,” Information Sciences, vol. 230,
pp. 106–131, 2013.

[57] J.-F. Kagy, T. Kayadelen, J. Ma, A. Rostamizadeh, and S. Jana,
“Te practical challenges of active learning: lessons learned
from live experimentation,” 2019, https://arxiv.org/abs/1907.
00038.

[58] J. Demffdffdar, “Statistical comparisons of classifers over
multiple data sets,” Journal of Machine Learning Research,
vol. 7, pp. 1–30, 2006.

[59] M. Friedman, “Te use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, no. 200, pp. 675–701,
1937.

[60] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometric Bulletin, vol. 1, p. 80, 1945.

[61] S. Holm, “A simple sequentially rejective multiple test pro-
cedure,” Scandinavian Journal of Statistics, vol. 6, pp. 65–70,
1979.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[63] G. Lemaı̂tre, F. Nogueira, and K. Christos, “Imbalanced-learn:
a Python toolbox to tackle the curse of imbalanced datasets in
machine learning,” Journal of Machine Learning Research,
vol. 18, no. 17, pp. 1–5, 2017.

International Journal of Intelligent Systems 17

https://arxiv.org/abs/1904.11643
https://arxiv.org/abs/1904.11643
https://arxiv.org/abs/1904.00370
https://arxiv.org/abs/1904.00370
https://arxiv.org/abs/2002.04709
https://arxiv.org/abs/1907.00038
https://arxiv.org/abs/1907.00038

