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Abstract

This report documents the work developed towards the research project "IPSTERS - IPSen-
tinel Terrestrial Enhanced Recognition System". It focuses on the exploration of several
machine learning (ML) techniques, covering different stages of a Land Use/Land Cover Clas-
sification (LULC) pipeline. These techniques aim to minimise problems typically found in
this kind of data, namely data ingestion, feature selection, data filtering and classification.
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1. Introduction

The Copernicus programme is the European Union (EU) Earth Observation (EO) pro-
gramme, headed by the European Space Agency, and the developer of the Sentinels EO
satellites. The IPSentinel is the Portuguese infrastructure developed by Direção Geral do
Território (DGT) and Instituto Português do Mar e da Atmosfera (IPMA) for storing and
providing images of Sentinel satellites, covering the Portuguese territory and its search and
rescue area. This free EO data has been used to inform environmental models, business
strategies and political decisions. However, this ever growing volume of data requires big
data workload that is overwhelming for Public Administration (PA) agencies. As a result,
the use of IPSentinel data has not been widely adopted by the PA that would profit from
it.

Often what these agencies need for their goals are digested data in the form of specific class
maps. These value-added products are often called level-3 products and are fundamental for
land-management and for the country’s international commitments such as the estimation
of CO2 emissions. These products are mainly obtained by visual interpretation of high
resolution satellite imagery, requiring significant allocation of human resources from the
PA and taking a long time to produce, being one of the reasons for the low update rate
and low resolution. In the case of COS (Portuguese Land cover-land use maps) they are
produced every 5 years with 1ha resolution and EU CORINE maps at least every 6 years
with 25ha.

1.1 Purpose and Objectives

The main goal of this project is to explore the applications and limitations of artificial
intelligence (AI) algorithms with accelerated processing hardware capabilities, as a unit of
the IPSentinel for the digestion of large volumes of remotely sensed data, to produce level-3
products for land applications with the least amount of human intervention. We propose
exploring two artificial intelligence approaches, one applying active learning techniques and
another based on fuzzy logic.

Specifically, this report focuses on the exploration of techniques to improve the quality of
LULC map outputs by the model under development. As such, topics such as Dimension-
ality Reduction, Anomaly Detection and Classification methods will be discussed.

Most of the work developed so far (excluding presentations and all preliminary experiments)
is available in the Github repositories of the project:
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1. remote-sensing: Includes all experiments except data filtering/anomaly detection
methods.

2. data-filtering: Includes experiments ran for data filtering/anomaly detection meth-
ods.

1.2 Document Structure

This document is organised in 4 chapters. Chapter 2 analyses the state of the art on
dimensionality reduction, data filtering and classification methods. Chapter 3 provides a
brief overview of the datasets used, preprocessing methods experimented and classification
methods tested. Chapter 4 presents the results obtained for each of these topics.
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2. Literature Review

The state of the art on the main challenges identified for the project is shown here. The
multispectral imagery used in this project is targeted for a large area (continental Portugal)
and contains complex and highly correlated spectral information. Although the presence of
multicollinearity doesn’t pose a problem for the adequacy of modern ML models to predict
a target variable [4], high dimensional data is difficult to process and therefore strains
the capacity of producing accurate LULC maps. Dimensionality reduction techniques are
used to address such an issue. These techniques allow the selection of the most important
feature within the image composites used, allowing for 1) a clearer understanding of the
most important features for LULC classification, 2) accelerated model training and 3) avert
the curse of dimensionality [6].

The datasets used in this project are Sentinel 2 image composites overlaid with the Por-
tuguese Land cover-land use maps (COS). This type of data is prone to noisy labelling
for various reasons. Label noisy may come from discrepancies between the original map’s
resolution (in the case of COS, 1ha) and the objective map’s resolution (for this project,
10m2), as well as land cover type changes or classification errors. Mislabeled points are po-
tentially problematic since the use of thesepoints for producing land cover maps at a 10m2

resolution can output generalised and/or erroneous predictions. Therefore, it is necessary
to explore the need for noisy data filtering.

Finally, classification algorithms are discussed in the last section. These algorithms should
be resistant to noise and/or have correcting measures to decrease the effect of the noisy
data in the model’s learning phase.

2.1 Dimensionality Reduction Methods

Dimensionality reduction techniques can be divided into 2 parts, feature selection and
feature extraction, both techniques explored below. Figure 2.1 depicts the different types
of techniques to reduce a dataset’s dimensionality.
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Figure 2.1: Dimensionality Reduction Techniques

Although all these methods reduce the dimensionality of data, the means used to do so
varies.

Feature Selection

Feature selection methods reduce dimensionality through the selection of the most impor-
tant features among the ones already existing in the dataset. The criterion used either
improves, maintains the model accuracy, or simplifies the model complexity. Below are
presented commonly used supervise feature selection methods. More information on listed
and/or additional methods can be found in [3, 6].

1. Correlation based feature selection (CFS). It’s based on the predictive power of a
feature subset, found by computing the correlation between the feature subset and
the target feature. It is therefore a generalisation of the Correlation Criteria as defined
in [6].

2. ReliefF [12]. It’s an extension of Relief [11] to support multi-class problems. For
each instance, the algorithm considers the closest instance from each class to update
the feature score vector. The score of any given feature decreases if it differs more
in nearby instances of the same class than nearby instances of the other class, and
increases in the reverse case.

3. Random Subspace Method (RSM) and Random Forest Method (RFM). Consists in
the training of base classifiers on different feature subsets. These methods use the
trained classifiers to assess each feature’s importance to the prediction of the target
variable. In the case of RFM, it is important to consider that Tree based classifiers
are trained through the minimisation of entropy on each data split. As such, variables
used earlier for decision rules along a decision tree’s path is deemed as having a higher
importance than the remaining variables.
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Along with the presented methods, a number of variations are being applied by practi-
tioners, such as Permutation Feature Importance (shuffling each feature after training a
classifier and check accuracy drops) and Drop Column Feature Importance (dropping one
feature and checking differences in accuracy compared to a classifier using all available
features).

2.2 Data Filtering Methods

The accuracy of a classifier is directly affected by the quality the training data used [1].
Despite the importance of classification tasks in remote sensing, obtaining well-labelled data
is time consuming, impracticable and expensive [20]. To the best of our knowledge there
is no systematic review on data selection/filtering methods for the remote sensing domain.
Through the analysis of the different algorithms available, 2 distinct types of filtering were
identified, each dividing into 2 subgroups. Figure 2.2 depicts the different methods found
for this purpose.

Figure 2.2: Different types of methods found for noisy label detection.

LULC maps are commonly presented in a shapefile format. A recent study employed poly-
gon membership information for each pixel to detect labelling errors within each polygon.
This was done through the use of clustering methods and cross cluster consistency mea-
surement methods [18]. Variations on this method are explored and documented below.

A frequent type of approach to address this challenge is based on the use of different machine
learning classifiers to detect these errors [2, 9, 14, 23, 26, 20, 5, 1, 24]. These methods
benefit from classifiers’ specificities, especially Random Forest, to implement different voting
strategies and model fitting methods to improve label noise detection. Since these methods
don’t use domain specific information, they can be used over any machine learning problem.

Although the impact of these filtering methods on robust classifiers is unknown, some
studies document the impact of label noise on classification accuracy, showing the robustness
of Random Forests and Deep Learning algorithms [19, 21]. Relevant filtering methods
presented in this section will incorporate the experiment, where the impact of data filtering
can be assessed (although these results are accompanied with significant limitations).
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Unsupervised methods

The best performing label noise detection algorithm based on clustering methods was pro-
posed by [18]. This method assumes the availability of a LULC map provided at a polygon
level. The training set identification method is based on 3 steps:

1. Polygon k-means clustering. Starts by clustering the points within each separate
polygon using the K-Means clustering algorithm and the Calinski Harabasz index
(CHi) to automatically determine the optimal number of clusters for each polygon.
The majority cluster of each polygon passes on to the next step, while all pixels
belonging to the minority clusters are dropped and disregarded for potential training
set candidates. Figure 2.3 depicts a qualitative example of this step.

2. Polygon consistency analysis. Majority clusters are submitted to consistency analysis,
which is done by computing each cluster’s Bhattacharyya distance (B-distance) to
compute the similarity of each subset to the entire set of clusters of the corresponding
class. Afterwards, the clusters with distance from the entire set of clusters smaller
than the 65th percentile of the cluster distances are selected for Stratified Random
Sampling.

3. Stratified Random Sampling. This step ensures the generation of a balanced dataset,
proportionate to the original class ratios.

Figure 2.3: Qualitative example of polygon k-means clustering result. (a) Original polygon
associated to the “crop” label. (b) Dominant land-cover class detected C1. (c) First minor
class detected C2 (road). (d) Second minor class detected C3 (river). Source: [18]

Through qualitative analysis, this method achieved satisfactory results. Regardless, it is
difficult to determine the quality of these results without reference data.

Other approaches include the use of autoencoders. Each class is used to train an au-
toencoder, allowing the models to learn how to make latent representations of instances
belonging to a single class. For each instance, a reconstruction error will be computed, us-
ing it as the mislabel score (the higher the error, the more likely the instance is mislabeled)
[24].
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Supervised methods

All supervised methods take a quantitative approach to the problem. Typically, these
methods minimise either one of two errors. On the one hand, instances incorrectly tagged
as mislabeled represent an E1 error. On the other hand, mislabeled instances left untagged
represent an E2 error. Figure 2.4 shows a visual representation of the two types of error.

Figure 2.4: Types of detection errors. Adapted from [2].

Supervised methods can be divided into 2 subgroups:

1. Single model approaches. They use a single model to determine wether a specific
instance is correctly labelled. A common implementation includes the use of a stan-
dard classifier to predict the label of an instance and tagging it as mislabeled if the
classifier’s prediction differs from the original label [2].

2. Ensemble-based approaches. They use a set of weak classifiers (most commonly De-
cision Trees) to generate a number of output predictions. These classifiers are always
trained in a subset of the dataset, which are then used to predict the label of the
remaining dataset. Consequently, this set of classifiers is trained k times, depending
on the number of splits used in the data stratification. These predictions are then
changed to a binary output of correct/incorrect prediction according to the original
label. The more incorrect predictions over a single instance there are, the more likely
it is for it to be tagged as mislabeled. The methods for aggregation of the set of
individual votes to compute the final score differ according to the method used.

Single model approaches benefit from reduced computation power and generally improve
the quality of the training set generated, although they rarely outperform any ensemble-
based approach [2, 5, 1, 20, 26, 23].
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Within ensemble-based approaches there is a simple underlying calculation of a mislabel
likelihood (henceforth referred to as mislabel ratio). For traditional methods the calculation
consists in a simple ratio between the count of incorrect prediction over the total number
of predictions:

MR(x) =
n−

∑n
i=1 v

y
i

n
(2.1)

Where n is the number of predictions for an instance x and vyi is 0 if the predicted label
differs from the true label, 1 otherwise. Although any threshold could be set forMR in order
to consider an instance’s label incorrect, most of the literature uses 2 different thresholds,
referred to as consensus (MR = 1, i.e., all predictors fail to classify an instance’s true
label) and majority filtering (MR ≥ 0.5, i.e., the majority of predictors fail to classify an
instance’s true label). Therefore, consensus filters focus on the minimisation of E1 error
whilst majority filtering minimises E2 error [2, 23]. Other methods have been used to
measure mislabel likelihood. [1] proposed an ensemble margin score, defined as:

EM(x) =
2
∑n

i=1 v
y
i − n

n−
∑n

i=1 v
y
i

(2.2)

Both majority and consensus filtering have been used in a number of recent publications
[5, 1, 20, 26, 23]. Some of these methods [1, 23] achieved improved performance by imple-
menting an iterative approach to the problem, consisting in multiple applications of filtering
process a dataset, gradually reducing its size on each iteration. Figure 2.5 provides a visual
representation of an ensemble-based filtering pipeline.
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Figure 2.5: Ensemble-based approaches pipeline.

Isolation Forest (iForest) [14] is another common method used for data filtering. It benefits
from the use of a set of Isolation Trees (iTrees) that attempt to isolate each instance within
the dataset. The rationale behind this algorithm consists in the measurement of the average
path length an instance goes through in all iTrees, assuming that an anomaly (in this case,
a mislabeled instance) has a different profiles than that of the remaining population of the
corresponding label. Consequently, a mislabelled instance is expected to have a smaller
path length than that of a correctly classified instance, as demonstrated in Figure 2.6.
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Figure 2.6: Anomaly detection using the iForest algorithm. Anomalies are more susceptible
to isolation and hence have short path lengths. (a) a normal point xi requires twelve random
partitions to be isolated; (b) an anomaly xo requires only four partitions to be isolated. (c)
averaged path lengths of xi and xo converge when the number of trees increases. Source:
[14]

2.3 Classification Methods

The most common classifiers identified for land cover image classification are Random
Forests (RFC), Support Vector Machines (SVM), K-Nearest Neighbours (KNN), artificial
neural networks (ANN), Maximum Likelihood (ML) and Decision Trees (DT) [10, 17].
However, recent literature has focused on the implementation of robust classifiers such as
Convolutional Neural Networks with varying structures, Random Forests and Autoencoders
[22, 25, 13].

Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of deep learning networks, commonly
applied in image data. Figure 2.7 shows a visual representation of the basic mechanisms
within a typical CNN. This type of classifier has been extensively used for LULC classifi-
cation and has achieved state of the art results in reference datasets such as Indian Pines.
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Figure 2.7: Typical Convolutional Neural Network example.

A particular CNN implementation specific to multi/hyper-spectral imaging classification
is the Hybrid Spectral Net [22]. This CNN consists of a set of three 3D convolutions
(as opposed to the conventional 2D convolutions), performing both Spectral and Spatial
feature learning, and one 2D convolution, followed by two fully connected hidden layers.
This model achieved state-of-the-art performance on the Indian dataset and was one of the
first models to implement a CNN architecture based on both 3D and 2D convolutions.

Another CNN implementation is the Residual Neural Network (ResNet) [7]. Its architecture
allows the construction of very deep networks while circumventing the so-called vanishing
gradient problem. This algorithm along with other deep neural networks have been tested
for land cover classification, achieving state-of-the-art classification accuracies [16].

Random Forests

Random Forest Classifiers were originally proposed by [8]. RFCs are an ensemble learning
method that combine a set of decision trees, each using a random subspace of the original
feature set. Random Forests correct the Decision tree’s tendency to overfit by using the
mode of the prediction of individual trees as its final prediction.
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3. Methodology

This chapter describes the work developed, along with the models implemented for each
studied step of the pipeline. The implementation of the experimental procedure was based
on the Python programming language, all functions, algorithms, experiments, and results
reported are available in the Github repository of the project.

3.1 Datasets

For the experiments reported four datasets are used:

1. LUCAS dataset. The 2015 LUCAS data was used as reference data for both model
training and validation. The LUCAS point label represents the corresponding land
cover/use type within the radius of 1.5 m for homogeneous classes and a 20 m radius
extent ("extended window") for heterogeneous classes (e.g., shrubland), gathered by
field observation and a very high-resolution photo interpretation [15]. In order to
reduce the risk of having Landsat pixel information represented wrongly in the field,
we only kept points observed in-situ from a close distance (<100 m). With the
same objective we removed the points which had linear features in the observation
(e.g., roads). This procedure was not solely applied to the class of "artificial land,"
as this would remove most parts of the samples. Furthermore, points with cloudy
pixels in the Landsat data were also excluded. This way, 1694 out of 2060 LUCAS
points were retained. This dataset contains eight classes that represent the main
land cover types for the study area. This pixel selection excluded a large number
of unacceptable reference points, and we assumed the remaining ones to be suitable
enough to represent the land cover type in a Landsat pixel coverage area of 30x30 m.
Further, we surmised that classifiers are capable of overcoming the noise caused by
pixels having mixed land cover representation if such pixels are still available in the
dataset.

2. COSsim polygons dataset. It uses a Sentinel 2 composite image along with COS-
sim+2018. This dataset was produced by taking a sample of polygons from each
class with a negative buffer applied and extracting the pixels within it.

3. Setubal dataset. Corresponds to sampled points out of Sentinel 2 images and the
labels were extracted from the EU’s agricultural survey.

12
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4. Coimbra dataset. It consists of a Sentinel-2 Satellite tile (29TNE) from August 2015
to which COS 2015 was overlaid, the study area covers a region around Coimbra,
Portugal (see Figure 3.1). Since the size of the entire tile is too large to be processed
in a timely manner, a subspace of the image will be used. Figure 3.2 shows the train
(top row, outer non-highlighted area) and test (bottom row) areas along with its
true colour image (left column) and ground truth (right column) used to assess the
accuracy on each classifier. As such, any pixel and/or neighbouring pixels used for
training will never appear in the test set, making them distinct sets.

5. COSsim sampled dataset. Corresponds to sampled points out of a Sentinel 2 com-
posite image along with COSsim+2018 using the stratified sampling approach.

6. COS sampled dataset. Consists of a stratified sample of a Sentinel 2 monthly compos-
ite image (between March 2018 and February 2019) of the tile 29SNC along with COS
2015 and 2018 to allow for cross temporal analyses and land cover change analyses.
The cross temporal analysis was done with a stratified sample of a similar composite
for the period of February 2019 and January 2020. Before the sampling phase, cloud
masking was applied to remove the values on months/pixels covered by clouds. These
values were then imputed using the linear interpolation of values on adjacent months.

Figure 3.1: Tile 29TNE.
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Figure 3.2: Coimbra dataset. The top row, outer non-highlighted area is the train set,
while the bottom row area is the test set. The left column shows their true colour image
and the right column shows the ground truth.

3.2 Preprocessing

In order to select the pixels for the COSsim polygons, COSsim sampled and COS sampled
datasets, a negative buffer was applied on labelled polygons in order to avoid border pixels,
which are frequently mislabeled. Afterwards, a set of experiments was conducted separately
for each different topic of interest.
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An experiment will be run in order to test different feature selection methods. The methods
applied are the Random Forest Method, Permutation Feature Importance and the inter-
section of both. An Overall Accuracy will be provided after training a RFC with each
method’s selected features.

A set of filters will be tested on the LUCAS dataset. In order to check each method’s
robustness to noise detection, different levels of noise is introduced for each test. The noise
is introduced based on combinations of labels that are difficult to distinguish by a classifier.
This is done through the training of a Random Forest on the original dataset and extracting
these label pairs from the confusion matrix. This way, we avoid random noise and approach
the type of noise that could be found in a real scenario.

An additional filtering method will be tested, combining clustering and ensemble methods.
As a first stage, en ensemble filter composed of two RFC with 10 and 25 estimators, a
logistic regression, a single Decision Tree and a Multilayer Perceptron Classifier is used. Si-
multaneously, a Minibatch K-Means clustering algorithm is run for each class. The number
of K is calculated using a granularity measure:

K(granularity) = int(granularity
√

size(X)) (3.1)

Where granularity is a hyperparameter and X is the feature matrix. Afterwards, the
average filtering results are computed per cluster and the top n% mislabeled clusters per
class are discarded from the training dataset. This method also ensures that at least one
cluster per class is kept and the threshold to define n can be done either through a threshold
for the mislabel rate or a threshold for the minimum percentage of observations to be kept.

Additionally, for traditional methods like majority and consensus filtering the number of
K splits is set up as a hyperparameter, as opposed to the predefined K = 4 used in the
literature.

3.3 Classification

The classifiers tested include the ones listed in the literature review: Random Forest Classi-
fier, Hybrid Spectral Net, fully connected autoencoder and ResNet50 (with 2 fully connected
layers, a total of 52 hidden layers).
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4. Results

4.1 Preprocessing

4.1.1 Dimensionality Reduction

The methods applied are described in section 2.1. The Gini method is the calculation of
the importance of a feature using the (normalised) total reduction of the Gini criterion
brought by that feature. Permutation is the shuffling of a feature after training a classifier
and measuring the accuracy difference, returning the most important features as the ones
that cause the highest accuracy drop. The Intersect method is the intersection of both
methods, maintaining only the features that are selected with both methods. The results
of the experiment were obtained by training a RFC using the selected features for each
method and are presented in Tables 4.1 and 4.2.

Selection Method Nbr of features used Accuracy F-Score G-Mean

Original 180 0.755 0.761 0.862
Gini 121 0.750 0.758 0.861

Permutation 58 0.749 0.760 0.863
Intersect 45 0.741 0.752 0.858

Table 4.1: Feature selection results using the Setubal dataset. The number of features
selected are based on optimal results of each selection method.

Method Accuracy F-score G-mean

Original 0.674 0.578 0.713
Correlation Based 0.665 0.569 0.706

Permutation 0.673 0.579 0.713
RFEntropy 0.673 0.580 0.715
RFGini 0.671 0.576 0.712
ReliefF 0.679 0.580 0.715

Table 4.2: Feature selection results using the COS sampled dataset. The number of features
selected are based on optimal results of each selection method.
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Another two different dimensionality reduction experiments were done for the COSsim
sampled and COS sampled datasets, using the same procedure. The feature rankings for
both datasets are available as csv files. Figures 4.1 and 4.2 show the evolution of the
different evaluation metrics on varying number of features using the ReliefF method on the
COSsim sampled and COS sampled datasets.

Figure 4.1: Evolution of the different scorers on varying number of features using the
COSsim sampled dataset and the ReliefF method.

Figure 4.2: Evolution of the different scorers on varying number of features using the COS
sampled dataset and the ReliefF method.

Additional analyses based on the COS sampled dataset are presented in tables 4.3 and
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4.4 and figure 4.3. Note that negative normalized mean scores do not necessarily mean a
negative contribution to the dataset’s class separability, but rather a below average contri-
bution.

Band Normalized Score

NDWI 0.651
NDMI 0.528
01 0.505
09 0.308
02 0.281
06 0.263
03 0.218

NDBI 0.153
8A 0.081
12 0.0
07 -0.027
08 -0.032
11 -0.05
05 -0.086
04 -0.12

NDVI -0.178

Table 4.3: Normalized mean importance per band.

Month Normalized Score

1 1.067
11 0.96
4 0.516
10 0.109
9 0.038
5 -0.014
6 -0.034
12 -0.054
8 -0.107
2 -0.14
3 -0.232
7 -0.238

Table 4.4: Normalized mean importance per month.
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Figure 4.3: Heatmap based on feature rankings.

Figures 4.4 and 4.5 show the most and least important feature’s class distribution using
kernel density plots.
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Figure 4.4: Kernel density plot of the feature with lowest importance score.

Figure 4.5: Kernel density plot of the feature with highest importance score.

4.1.2 Data Filtering

Figure 4.5 shows the Overall Accuracy of a RFC trained with filtered datasets using each
of the filters presented. Note that all methods are tuned for optimal performance on the
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given dataset, as opposed to the fixed parameters commonly used in majority, single and
consensus filters.

Method 0 5 10 20 30 40

No Filter 0.621 0.622 0.622 0.604 0.559 0.487
Single 0.604 0.604 0.612 0.591 0.574 0.533

Majority 0.619 0.614 0.616 0.599 0.584 0.544
Consensus 0.621 0.627 0.622 0.613 0.585 0.534

Our method 1 0.630 0.628 0.624 0.615 0.579 0.538
Our method 2 0.631 0.630 0.629 0.619 0.581 0.552

Table 4.5: Data filtering results using the LUCAS dataset. Column labels represent the
different levels of noise introduced in the original dataset.

A similar experiment was performed on the COS sampled dataset. This experiments uses
the same methods, although the dataset is used as-is (i.e., no noise was introduced into the
dataset). The results of that experiment are reported in table 4.6.

Method Accuracy F-score G-mean

None 0.673 0.575 0.711
Single 0.652 0.541 0.687

Consensus 0.666 0.563 0.703
Majority 0.655 0.546 0.691
iForest 0.653 0.536 0.713

OwnMethod1 0.673 0.578 0.712
OwnMethod2 0.674 0.578 0.713

Table 4.6: Data filtering results using the COS sampled dataset.

Aside from the methods presented above, other variations of [18] were experimented. These
variations considered different clustering methods and used two step selection processes, as
shown in figure 4.6. Clustering methods shown in the columns represent phase 1, which is
the initial clustering of the pixels in each polygon. The centroids of these clusters are then
clustered in phase 2, using either method presented in the rows. The pixels selected for
posterior work are the ones belonging to the subclusters (obtained in phase 1) that belong
to the majority cluster (computed in phase 2). This process is done for each existing class
in the target variable and the optimal number of clusters in both phases is determined
using the Calinski-Harabasz index. The only two situations where such procedure doesn’t
apply are the methods using Bhattacharyya distance in phase 2, where the same procedure
as presented in [18] was used.
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Figure 4.6: Paris method variations tested. Legend: * Includes per-polygon minority
clusters rejection. ** Paris et al. 2019 implementation.

Although some hierarchical clustering methods were experimented, the results were rarely
satisfactory. For that reason, these algorithms were excluded for further analysis. Figure
4.7 present the pixel selection outcome for a polygon belonging to the rainfed class.
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Figure 4.7: Example of Paris variations pixel selection outcomes using a polygon belonging
to the rainfed class.
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4.2 Classification

The Overall Accuracy (OA), F-Score and Geometric mean (G-Mean) for each classifier’s
prediction on the test area is shown in table 4.7. Classification cores on the COS sampled
dataset is shown in table 4.8

Score RF HSN MLPAE ResNet50

OA 0.674 0.700 0.717 0.762
F-Score 0.354 0.378 0.318 0.422
G-Mean 0.559 0.573 0.540 0.628

Table 4.7: Classification scores using the classifiers fitted on the training area (Coimbra
dataset) with predictions made on the test area, shown in Figure 3.2. Legend: Random For-
est Classifier (RF), Hybrid Spectral Net (HSN), Autoencoder-based multilayer perceptron
(MLPAE), Residual Neural Network with 50 layers and 2 fully-connected layers (ResNet50).

Score ABC GBC LR RF

OA 0.506 0.672 0.639 0.715
F-Score 0.248 0.596 0.538 0.646
G-Mean 0.499 0.73 0.691 0.757

Table 4.8: Classification scores using the COS sampled dataset with 5-fold cross valida-
tion. Legend: AdaBoost Classifier (ABC), Gradient Boosting Classifier (GBC), Logistic
Regression (LR), Random Forest Classifier (RF).

The maps generated by each classifier is displayed in Figure 4.8.
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Figure 4.8: Generated maps per classifier. (a) True color image; (b) Ground truth; (c)
Random Forest Classifier; (d) Hybrid Spectral Net; (e) Autoencoder-based multilayer per-
ceptron; (f) Residual Neural Network.
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Cross temporal validation

Based on the results reported in the previous sections, we selected the best performing
methods from each step of the pipeline and measured their performance in a cross temporal
setting using the COS sampled dataset. Table 4.9 shows the algorithms used for this step.

Step Algorithm Observations

Feature Selection ReliefF Reduced dimensionality to the top 70 features
Data Filtering Our Method 2 Used hyperparameters that returned optimal re-

sults in previous experiments
Classification RFC Used with 500 estimators and Gini criterion

Table 4.9: Algorithms used for cross temporal validation

Given the present epidemic and general lockdown we are presently experiencing and the
existing limitations on computational power, this experiment was run on a computer located
in Direção Geral do Território (DGT), whose results are unavailable. Although, preliminary
experiments on this topics showed that data filtering algorithms proved ineffective when
faced with cross temporal data.

An additional analysis was done with the goal of understanding LULC change over the two
most recent LULC maps produced at DGT (2015 and 2018). Figure 4.9 shows a confusion
matrix comparing land cover change over these two periods on a sample of approximately
one million pixels over the periods of 2015 and 2018.

Figure 4.9: LULC change analysis using the COS sampled dataset.
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